

Pakistan Veterinary Journal

ISSN: 0253-8318 (PRINT), 2074-7764 (ONLINE) DOI: 10.29261/pakvetj/2022.075

RESEARCH ARTICLE

Biological Activity of the Secondary Compounds of Guazuma ulmifolia Leaves to Inhibit the Hatching of Eggs of Haemonchus contortus

J Velázquez-Antunez¹, J Olivares-Perez^{*1}, A Olmedo-Juárez^{*2}, S Rojas-Hernandez¹, A Villa-Mancera³, T Romero-Rosales¹, Zamilpa A⁴ and Gonzalez-Cortazar M⁴

¹Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero, Iguala, México ²Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Morelos, México ³Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, México. Centro de Investigaciones Biomédicas del Sur. IMSS, Xochitepec, Morelos, México. *Corresponding authors: olivaares@hotmail.com, olmedo.agustin@inifap.gob.mx

ARTICLE HISTORY (22-235)

Received: July 16, 2022 Revised. October 9, 2022 Accepted: October 14, 2022 Published online: November 02, 2022 Key words: Parasites Extract Eggs Phenols

ABSTRACT

Epidemiologically Haemonchus contortus is the most important parasite in the tropics, females can produce up to ten thousand eggs and blood feed. As objective, it was evaluated the *in vitro* effect of the secondary compounds of Guazuma ulmifolia leaves extracted with hydroalcoholic (HA) solvent and by fractionation in liquid-liquid layer with ethyl acetate, to inhibit eggs hatching of H. contortus, to interrupt the biological cycle of the parasite. The bioactive compounds were identified by high performance liquid chromatography. Challenged doses were in the HA extract 1.25-40mg/mL, and aqueous and organic fractions of 1.25-10 mg/mL, respectively, distilled water and 2% methanol were negative controls and thiabendazole (0.1 mg/mL) positive control, for a total of seventeen treatments. The treatments were tested in three replicates with four repetitions, the data were analyzed with a GLM in a completely randomized design using ANOVA to an alpha ≤ 0.05 . The effective concentrations (EC₅₀ and EC₉₀) were estimated by Probit analysis in the SAS program. The secondary compounds identified were of the phenols group such as flavonols, flavones, coumaroyl derivatives and hydroxycinnamic acid. The HA extract and aqueous fraction showed a similar effect to the positive control from doses of 2.5 mg/mL and the organic fraction from 1.5 mg/mL (P<0.01). In HA extract and aqueous fraction, the EC₅₀ and EC₉₀ were similar, but in the organic fraction the ovicidal effect was at lower EC_{50} (0.86) mg/mL) and EC₉₀ (1.67mg/mL). In conclusion G. ulmifolia leaves contain secondary compounds able for interrupting the cycle of *H. contortus* in the egg stage and the content of phenols like hydroxycinnamic acid and coumaroyl derivatives could be responsible for the ovicidal effect.

To Cite This Article: Velázquez-Antunez J, Olivares-Perez J, Olmedo-Juárez A, Rojas-Hernandez S, Villa-Mancera A, Romero-Rosales T, Zamilpa A, Gonzalez-Cortazar M, 2023. Biological activity of the secondary compounds of Guazuma ulmifolia leaves to inhibit the hatching of eggs of Haemonchus contortus. Pak Vet J, 43(1): 55-60. http://dx.doi.org/10.29261/pakveti/2022.075

INTRODUCTION

Parasites are microorganisms that affect the health of domestic animals (De Jesús et al., 2020). Haemonchus contortus is a gastroenteric nematode that inhabits the abomasum of small ruminants (Baltrusis et al., 2020). Epidemiologically it is the most important species with 71% prevalence (Olivares et al., 2012) and causes the greatest deaths in animals (Gareh et al., 2021). An adult female lays 5,000 to 10,000 eggs per day, causing rapid contamination of pastures (Laca-Megyesi et al., 2020). H.

contortus has a direct cycle and its transmission depends on environmental conditions (Olivares et al., 2012; Gareh et al., 2021). It is a hematophagous parasite capable of causing losses between 200 to 600mL of blood per day in the host, which leads to anemia and hypoproteinemia, inflammation and destruction of the intestinal mucosa, decreased intestinal enzymes secretion, diarrhea and death of animals (Ehsan et al., 2020). In less severe conditions, the course can be chronic with loss of appetite, decreased weight gain and weakness, but in all cases the economic losses are evident (Flay et al., 2022). Chemical

anthelmintics used for control normally trigger resistance in the parasite due to exposure (De Jesús et al., 2018). Resistance to anthelmintic drugs such as macrocyclic lactones, imidazothiazoles, and benzimidazoles have been reported (Baltrusis et al., 2020). A study carried out in sheep and goats showed that there is resistance of H. contortus to benzimidazole, levamisole, ivermectin and moxidectin (Gainza et al., 2021; Arsenopoulos et al., 2020). This resistance is a global problem (Laca-Megyesi et al., 2020). In this context, the need arises to develop a rational, sustainable and ecological management in small ruminants for the control of nematodes that can reduce the use of anthelmintics and slow down the development of resistance (De Jesús et al., 2020), the use of extracts of plants and their secondary metabolites represents an alternative. Studies have reported that some secondary compounds of leguminous trees have anthelmintic effects to interrupt the life cycle of parasites (De Jesús et al., 2018). Tannins such as flavonoids, glycosylates, flavones, and lactones bind to the structural proteins of nematodes, and can inhibit egg hatching, development, sheathing and larval motility, making anthelmintic activity evident (Von Son-de Fernex et al., 2016). Guazuma ulmifolia has pharmacological activity such as antiulcer, antidepressant, antidiabetic, antioxidant, analgesic, antifungal, anticholistenerase and anti-inflammatory activity, due to its chemical compounds such as flavonoids, alkaloids, glycosylated and saponins (Rafi et al., 2020). Another study demonstrated the impact of the hydroalcoholic extract and the fractions (organic and aqueous) of G. ulmifolia against H. contortus eggs, when added to 10% of the dry matter of the diet in lambs (Le Bodo et al., 2020). The aim of the study was to evaluate in vitro the ovicidal effect of secondary compounds in G. ulmifolia leaves against H. contortus eggs.

MATERIALS AND METHODS

Vegetal Material: *Guazuma ulmifolia* leaves (3000 g) were collected and dehydrated at 45°C in the shade until constant weight. The dry material was ground in a Willy mill with a 1 mm screen.

Preparation of the extract with hydroalcoholic solvent and its fractionation: The ground leaves were placed in 5 L Erlenmeyer flasks and a hydroalcoholic solution (70% distilled water: 30% methanol) was added using a mass volume ratio of 1:10, for 48 hours. The hydroalcoholic solution (HA) was filtered through different sieves (gauze, cotton and filter paper). The HA solution free of plant material was concentrated by distillation under reduced pressure in a rotary steamer (BUCHI R-300, Switzerland). It was then brought to total dryness by lyophilization processes (LABCONCO FreeZone -1045C 4.5 L Benchtop, U.S.). A part of the HA extract, (10%) was stored at 4°C and its biological effect against H. contortus eggs was evaluated in vitro, the rest (90%) was resuspended in distilled water at a ratio of 1 g of extract in 100mL of water and fractionated in a liquid-liquid layer with ethyl acetate at a ratio of 1:1 (v/v). From this process, the aqueous (F-Aq) and organic (F-AcOEt) fractions were derived, which were purified in the rotary steamer that eliminated the solvents and the total drying was carried out

in the lyophilizer. Like the extract, the fractions were stored at 4°C isolated from light, their biological activity were evaluated to inhibit the hatching of parasite eggs (Olmedo-Juárez *et al.*, 2017).

Collection of Haemonchus contortus eggs: Eggs were collected from the feces of two sheep (28kg live weight) artificially infected with a monospecific INIFAP local strain of H. contortus orally at a single dose of 350 L₃/kg live weight. The feces collected directly from the rectum were macerated in clean water, 35mL of the macerated were deposited in 50 mL falcon tubes, plus 15 mL of saline solution (42%), then the tubes were shaken for one minute and centrifuged at 3500rpm for 5 min and were filtered through 75 and 32µm sieves adding distilled water until clean eggs were obtained, suspended in a solution of 15 mL of distilled water (Coles et al., 1992). Afterwards, the eggs per milliliter were titrated and the dilutions were prepared with distilled water at concentrations of 100 ± 15 eggs in 50µL and in this way they were used in the bioassay (Zarza-Albarrán et al., 2020).

Identification of secondary compounds by HPLC analysis: For the identification of secondary compounds in the extract elaborated with hydroalcoholic solvent and the fractions (aqueous and organic) they were analyzed by High Performance Liquid Chromatography (HPLC) equipped with a 2695 water separation module and a 996 photodiode array detector of water and the empower Pro software (Waters Corporation, USA). Chemical separation was performed on a SUPELCOSIL LC-F column (4.6mm x 250mm i.d., 5µm particle size) (Sigma-Aldrich, Bellefonte, USA). In the mobile phase, 0.5% aqueous solution of trifluoroacetic acid (Solvent A) and acetonitrile (Solvent B) were used. Titrated gradient systems were as follows: 0-1 min, 0% B; 2-3 min, 5% B; 4-20 min, 30% B; 21-23 min 50% B; 24-25 min, 80% B; 26-27 min, 100% B and 28-30 min, 0% B. The flow rate was kept at 0.9 mL/min and the injection volume was 10 µL. The absorbance was measured at 330nm. The compounds obtained from the fractions were identified by comparison of the retention times and UV spectra with the reference standards (Sigma-Aldrich, St Louis Mo, USA) (Wagner and Bladt, 2001).

Egg Hatching Inhibition (EHI) Assay: The ovicidal activity of the secondary compounds of G. ulmifolia present in the extract prepared with HA solvent and the aqueous and organic fractions was determined separately through three replicates with four repetitions (n=12) for each concentration dose used. The study was performed in vitro in 96-well microtiter plates. In the extract prepared with HA solvent, the concentrations challenged were 1.25. 2.5, 5, 10, 20 and 40mg/mL, in the aqueous fraction 1.25, 2.5, 5, 10mg/mL, in the organic fraction 0.65, 1.25, 2.5, 5 and 10mg/mL and distilled water and 2% methanol were used as negative controls and Thiabendazole (0.1mg/mL) as positive control. Concentration doses and negative and positive controls were considered as treatments in a completely randomized design. In each replica and repetition (each well of the plate) 50µL of the treatments and 50 μ L of the aqueous suspension with 100 \pm 15 parasite eggs were deposited. Subsequently, the plates were

Table I: Egg hatching inhibition (EHI) of *H. contortus* exposed to secondary compounds extracted from the *G. ulmifolia* leaves with hydroalcoholic solvent

Treatments	Number		%EHI
	Inhibited	Eggs	
	eggs	hatched to	
		Larvae	
Distilled water	4.80	86.60	4.72c
Methanol 2%	6.45	89.3	6.51°
Thiabendazole (0.1%)	98.35	0.1	99.65 ª
Hydroalcoholic extract (mg/mL)			
40	80.125	0.5	98.85 ª
20	72.50	0.13	99.85 ª
10	105	0	100.0ª
5	76.88	0.50	99.3 1ª
2.5	94.75	0.25	99.77 ª
1.25	14.25	59.75	19.02⁵
Aqueous fraction (FAq, mg/mL)			
10	87	0.5	99.56 ª
5	81.1	2.1	98.09ª
2.5	53.57	5.71	92.88 ª
1.25	2.57	81.14	2.75°
Organic fraction (FAc-OEt, mg/mL)			
10	112.44	2.38	96.72 ª
5	113.81	0.25	99.78 ª
2.5	105.19	1.50	97.70 ^a
1.25	115.60	0.20	97.77 ª
Variation coefficient			2.63
R ²			0.98
P-value			<0.01

incubated at room temperature (25-28°C) for 48 h, after the incubation time, the hatching of the eggs was stopped by applying 10μ L of Lugol's solution to each well. Finally, the plate was read to count the total number of eggs and larvae (L₁ or L₂) in an optical microscope (LABOMED, USA) with a 10X objective. The percentage reduction in egg hatching was estimated using the following formula:

Egg hatching inhibition (EHI%) =
$$\frac{\text{egg number}}{\text{egg number} + \text{larvae}} x100$$

Statistical analysis: EHI percentage data were analyzed by ANOVA in a completely randomized design. The comparison of means between treatments was performed with the Tukey test at a minimum confidence level of 95%. For the treatments that resulted in concentration-dependent effects, the effective concentrations 50 and 90 (EC₅₀ and EC₉₀) were estimated using the PROC PROBIT procedure of the SAS statistical package (SAS, 2014).

RESULTS

Results on the of the eggs *Haemonchus contortus* hatching inhibition caused by exposure to secondary

compounds extracted from the leaves of *G. ulmifolia* with the hydroalcoholic solvent, as well as secondary compounds derived in the aqueous and organic fractions are presented in Table 1. It is observed that both the secondary compounds extracted by the hydroalcoholic solvent, as well as those partitioned in the aqueous fraction (FAq), showed a similar effect to thiabendazole (positive control) at a concentration dose of 2.5mg/mL with inhibitions of 99.77 and 92.88% respectively. The secondary compounds partitioned in the organic fraction (FAc-OEt) showed the same effect (97.77% inhibition) from the concentration doses of 1.5mg/mL.

Fig. 1 shows the effective concentrations (EC) shown by the secondary compounds extracted from the *G. ulmifolia* leaves to inhibit the eggs hatching of *H. contortus.* In the extract elaborated with hydroalcoholic solvent, EC₅₀ (1.59mg/mL) and EC₉₀ (2.55mg/mL) were similar to those expressed by the compounds carried in the aqueous fraction (EC₅₀ = 1.80; EC₉₀ = 2.93mg/mL), however, the compounds derived in the organic fraction showed an ovicidal effect at lower EC₅₀ (0.86mg/mL) and EC₉₀ (1.67mg/mL).

The secondary compounds identified in the extracts elaborated from the G. ulmifolia leaves are shown in Fig. 2, 3 and 4. In the extract elaborated with a hydroalcoholic solvent (Fig. 2), the main active compounds responsible for inhibiting the fertility of the parasite eggs were, the phenols observed in Fig. 2, peaks 1, 2 and 6 correspond to flavonols, peaks 3 and 5 belong to flavones and finally peaks 4 and 7 correspond to derivatives of hydroxycinnamic acid and coumaroyl derivatives respectively. The compounds derived in the aqueous fraction (Fig. 3) were from the group of phenols such as flavonols (peaks 1 and 2) and, to a lesser extent, those derived from flavones (peak 3) and coumaroyl derivatives (peak 4). In the organic fraction (Fig. 4) the secondary compounds identified were flavonols (peaks 1, 2 and 8), flavones (3, 5 and 7) and derivatives of hydroxycinnamic acid (peaks 4 and 10) and coumaroyl derivatives (peak 9).

DISCUSSION

The results showed that the secondary compounds extracted by the HA solvent as well as those fractionated in water and ethyl acetate showed biological activity to eggs hatching inhibit of the *H. contortus* and thereby break the life cycle of the parasite, a phenomenon that results of epidemiological interest in animal production systems (Olivares *et al.*, 2012). Olmedo *et al.* (2020) also

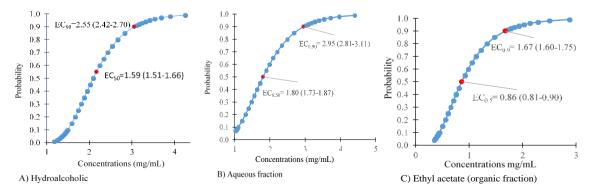


Fig. I: Effective concentrations (EC) of secondary compounds extracted from G. ulmifolia leaves with different solvents.

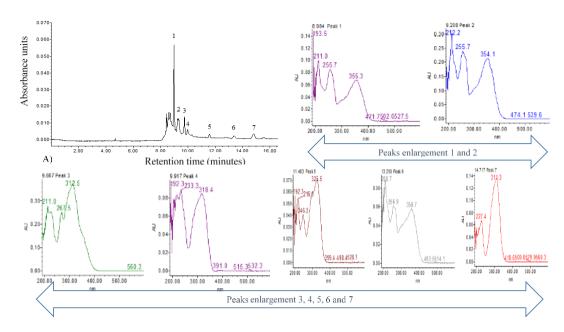


Fig. 2: Secondary compounds (A) identified in the extract of G. ulmifolia leaves with hydroalcoholic solvent (HPLC analysis).

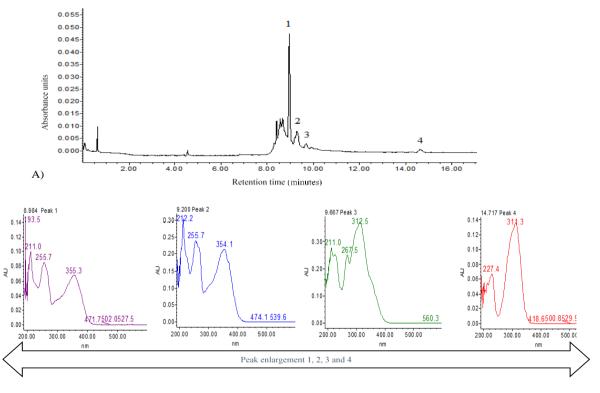


Fig. 3: Secondary compounds (A) identified in aqueous fraction of the extract of G. ulmifolia leaves (HPLC analysis).

interrupted the cycle of *H. contortus* in lambs with the oral use of the organic fraction of a hydroalcoholic extract of *Acacia farnesiana* with an effectiveness between 54 and 68%, Castañeda-Ramírez *et al.*, (2020) inhibited the development of *H. contortus* eggs in the morula stage by *in vitro* exposure to a methanolic extract of *Annona* tree, Birhan *et al.*, (2020) demonstrated a similar response against parasite eggs and larvae when exposed to extracts made from *Rhus glutinosa*, *Syzygium guineensa* and *Albizia gumifera*. It was also evident that the effect of the secondary compounds present in the plant extracts were dependent on the concentration doses, with a determination coefficient of 0.98 (Table 1), this explained that the unhatched parasite eggs were attributed in a 98% at the concentration doses of the extracts, results with the same trend were reported by De Jesús *et al.* (2020) and Olmedo *et al.* (2022) with secondary compounds extracted from the *Caesalpinia coriaria* fruits against the same parasite and in the same phase of the life cycle. The HPLC analysis revealed both in the hydroalcoholic extract and in the aqueous and organic fraction, the presence of the same secondary compounds of the phenol group such as flavonols, flavones and coumaroyl and hydroxycinnamic acid derivatives, this was related to the similarity in the EC_{50} and EC_{90} observed between the secondary compounds present in the hydroalcoholic extract and the derivatives in the aqueous fraction (Fig. 1, letters A and B). The EC₅₀ and EC_{90} in the secondary compounds derived from the organic

58

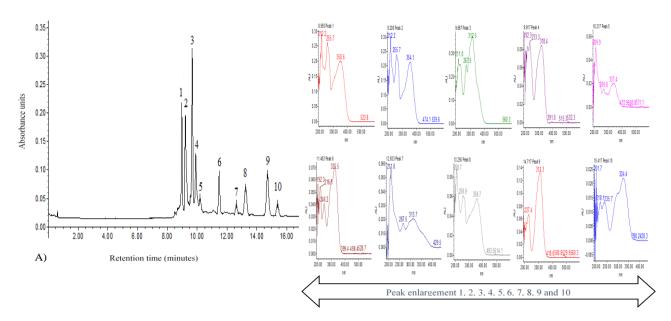


Fig. 4: Secondary compounds (A) identified in the organic fraction of G. ulmifolia leaves with ethyl acetate solvent (HPLC analysis).

fraction demonstrate effectiveness at lower doses (Fig. 1, letter C), even when the secondary compounds identified belong to the same group (Fig. 4), these results could indicate that the observed effect is attributed at a higher concentration per unit volume of the extract. Olmedo et al. (2022) observed that during the elaboration of the extract a higher concentration of secondary compounds could be derived in response to the solvent used and linearly with the lower EC₅₀ and 90; Al-Rawahi et al. (2013) and Alara et al. (2021) explained that phenols reacted differently depending on the solvent used. Olmedo et al. (2020) concluded in a study with Acacia farnesiana that the secondary compounds with the greatest biological activity to inhibit eggs and larvae of H. contortus were found in the organic fraction. Ahmed et al., (2020) also reported differences between crude extracts of two plants and their parts on the inhibition of *H. contortus* eggs. In addition, in Fig. 4 of the organic fraction, the HPLC recorded the presence of ten phenolic compounds, compared to four in the aqueous fraction (Fig. 3) and seven in the hydroalcoholic extract (Fig. 2), which indicated a greater synergistic action of the secondary compounds derived in the organic fraction and therefore the lethal concentrations to inhibit the eggs hatching of the parasite were expressed at lower concentration doses, this action was also described by Beltrão et al. (2020) in extracts used for the control of hectoparasites, Younoussa et al. (2020) in extracts used for insect control and by Escareño-Díaz et al. (2019) in combinations between various phenolic compounds such as quercetin, coumaric acid, caffeic acid and rutin, where they reported reductions up to 43 and 64% in the EC_{50} to inhibit the eggs hatching and up to 68 to 83% in the unsheathing inhibition of the L₃ larvae of Cooperia punctata. In the mechanism of action, there is evidence that phenols, such as those identified in this study, are a group of secondary compounds that affect the development of the parasite cycle in a similar way to anthelmintics (Muhammad et al., 2020). Escareño-Díaz et al. (2019) and Zarza-Albarrán et al. (2020) identified that phenolic compounds adhere to the egg shell to inhibit the development of the embryo and to the cuticle of the larvae

to break cell integrity and prevent the unsheathing. In this study, the inhibition of eggs hatching of the *H. contortus* could be attributed to the interruption in the development of the embryo inside the parasite egg due to the biological action of the phenolic compounds extracted and identified in the foliage of the plant.

Conclusions: *Guazuma ulmifolia* leaves contain secondary compounds able for interrupting the cycle of *H. contortus* in the egg stage and the content of phenols like hydroxycinnamic acid and coumaroyl derivatives could be responsible for the ovicidal effect. These results justify continuing the investigation on G. ulmifolia leaves *in vivo* under controlled conditions to verify the biological activity recorded in the *in vitro* bioassays.

Authors contribution: JVA, JOP, AOJ, ZA and GCM developed the project. SRH, AVM and TRR performed the statistical analyzes on the variable data. All authors reviewed and approved the structure and writing of the manuscript. There is no conflict of interest among authors

Acknowledgments: The authors thank CONACYT as an institution that grants scholarships to postgraduate students and thus allowed the planning and execution of this research project that allowed the formation of high-quality human resources.

REFERENCES

- Al-Rawahi AS, Rahman MS, Guizani N, et al., 2013. Chemical composition, water sorption isotherm, and phenolic contents in fresh and dried pomegranate peels. J Drying Technol 31:257–263.
- Alara OR, Abdurahman NH and Ukaegbu CI, 2021. Extraction of phenolic compounds: A review, Current Research in Food Science. Cur Res Food Sci 4:200-214
- Ahmed HA, Ejo M, Feyera T, et al., 2020. In Vitro Anthelmintic Activity of Crude Extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus J Parasitol Res 4950196: 1-7.
- Arsenopoulos K, Minoudi S, Symeonidou I, et al., 2020. Frequency of Resistance to Benzimidazoles of Haemonchus contortus Helminths from Dairy Sheep, Goats, Cattle and Buffaloes in Greece. Pathogens 9:347.

59

- Baltrusis P, Komaromyov M, Varadyb M, et al., 2020. Assessment of the F200Y mutation frequency in the β tubulin gene of Haemonchus contortus following the exposure to a discriminating concentration of thiabendazole in the egg hatch test. Experim Parasitol 217:107957
- Beltrão MM, Chaaban A, Nunes GE, et al., 2020. Plant extracts used for the control of endo and ectoparasites of livestock: a review of the last 13 years of science. Archiv Vet Sci 25:01-27.
- Birhan M, Gesses T, Kenubih A, et al., 2020. Evaluation of Anthelminthic Activity of Tropical Taniferous Plant Extracts Against Haemonchus contortus. Vet Med (Auckl) 11:109-117
- Castañeda-Ramírez GS, Torres-Acosta JFJ, Mendoza-de Gives P, et al., 2020. Effects of different extracts of three Annona species on egghatching processes of Haemonchus contortus. J Helminthol 94: e77, 1–8.
- Coles GC, Bauer C, Borgsteede F, et al., 1992. World association for advancement in veterinary parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 44:35–43.
- Laca-Megyesi Š, Königová A, Babják M, et al., 2020. Wild ruminants as a potential risk factor for transmission of drug resistance in the abomasal nematode *Haemonchus contortus*. European J Wildl Res 66:1-9.
- De Jesús MX, Olmedo JA, Olivares PJ, et al., 2018. In vitro Anthelmintic Activity of Methanolic Extract from *Caesalpinia coriaria* J. Willd Fruits against *Haemonchus contortus* Eggs and Infective Larvae. BioMed Res Internat 2018:7375693, 6.
- De Jesús MX, Olmedo JA, Rojas HS, et al., 2020. Evaluation of the hydroalcoholic extract elaborated with *Caesalpinia coriaria* Jacq Willd tree fruits in the control of *Haemonchus contortus Rudolphi*. Agroforest Syst 94:1315-1321. 123
- Ehsan M, Si HR, Li LQ, et al., 2020. Advances in the Development of Anti-Haemonchus contortus Vaccines: Challenges, Opportunities, and Perspectives. Vaccines 8:555.
- Escareño-Díaz S, Alonso-Díaz M, Mendoza de Gives P, et al., 2019. Anthelmintic-Like Activity of Polyphenolic Compounds and Their Interactions against the Cattle Nematode *Cooperia punctate*. Vet Parasitol 274: 108909.
- Gainza YA, Santos IB, Figueiredo A, et *al.*, 2021. Anthelmintic resistance of *Haemonchus contortus* from sheep flocks in Brazil: concordance of *in vivo* and *in vitro* (RESISTA-Test©) methods. Braz J Vet Parasitol 30: e025120.
- Gareh A, Elhawary NM, Tahoun A, et al., 2021. Epidemiological, Morphological, and Morphometric Study on *Haemonchus* spp. Recovered From Goats in Egypt. Front Vet Sci 8:705619.

- Flay KJ, Hill Fl and Muguiro DH, 2022. A Review: *Haemonchus contortus* Infection in Pasture-Based Sheep Production Systems, with a Focus on the Pathogenesis of Anaemia and Changes in Haematological Parameters. Animals 12: 1238.
- Le Bodo E, Hornick JL, Moula N, et al., 2020. Assessment of Gastrointestinal Parasites and Productive Parameters on Sheep Fed on a Ration Supplemented with *Guazuma ulmifolia* Leaves in Southern Mexico. Animals 10:1617.
- Rafi M, Meitary N, Anggraini SD, et al., 2020. Phytochemical Profile and Antioxidant Activity of *Guazuma ulmifolia* Leaves Extracts Using Different Solvent Extraction. Indonesian J Pharm 31:171–180.
- Muhammad AZ, Rao ZA, Warda Q, et al., 2020. Role of secondary metabolites of medicinal plants against Ascaridia galli. Worlds Poult Sci J 76:639-655.
- Olivares PJ, Gutiérrez SI, Rojas HS, et *al.*, 2012. Seasonal prevalence of Strongyle in Creole goats of the Tierra Caliente region, State of Guerrero, Mexico. Res Opin Anim Vet Sci, 2:216-220.
- Olmedo JA, Zarza AMA, Rojo RR, et al., 2020. Acacia farnesiana pods (plant: Fabaceae) possesses anti-parasitic compounds against Haemonchus contortus in female lambs. Experim Parasitol 218:107980.
- Olmedo JA, De Jesús MX, Rojas HS, et al., 2022. Eclosion inhibition of Haemonchus contortus eggs with two extracts of Caesalpinia coriaria fruits. Rev Bio Cienc 9:e1121.
- Olmedo-Juárez A, Rojo-Rubio R, Zamilpa A, et al., 2017. In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes. Vet Res Commun 41:227–232.
- SAS, 2014. SAS Institute. SAS User's Guide: Statistics. Ver 9.0. Cary, NC, USA.
- Von Son-de Fernex EV, Alonso-Díaz MA, Mendoza-de Gives P, et al., 2016. Actividad ovicida de extractos de cuatro especies de plantas contra el nematodo gastrointestinal *Cooperia punctata*. Vet Mex 3:1-14.
- Wagner H and Bladt S, 2001. Plant Drug Analysis, second ed. Springer, Berlin, Heidelberg, New York, USA.
- Younoussa L, Kenmoe F, Oumarou MK, et al., 2020. Combined Effect of Methanol Extracts and Essential Oils of Callistemon rigidus (Myrtaceae) and Eucalyptus camaldulensis (Myrtaceae) against Anopheles gambiae Giles larvae (Diptera: Culicidae). BioMed Res Internat 2020:4952041, 9.
- Zarza-Albarrán MA, Olmedo-Juárez A, Rojo-Rubio R, et al., 2020. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against *Haemonchus contortus* eggs and infective larvae. J Etnopharma 249:112402.