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 The common carp, Cyprinus carpio, is a stenohaline species but can tolerate some 

changes in environmental salinity. This study aimed to better understand their 

osmoregulatory response to salinity increases. Messenger RNA expression of the 

Na+K+ ATPase α3 (NKAα3) and Aquaporin 3α (AQP3α) genes and 

histomorphological changes of the chloride cells were investigated on common carp 

gills, as an osmoregulatory organ in experimental and control groups. The salinity 

of the experimental group gradually increased to 10 ppt by 3 ppt NaCl per day. The 

experiment continued for 14 days. Gill samples were preserved in RNA later for 

RT-qPCR analysis. For histomorphological changes, gill tissue was fixed in 

glutaraldehyde and processed for electron microscopic examination. RT-qPCR 

analysis further confirmed that mRNA expression levels of NKAα3 and AQP3α were 

significantly up-regulated with increasing concentration of NaCl. The tissue-

specific NKAα3 and AQP3α transcript response in the gill suggests a critical role of 

NKAα3 and AQP3α expression in fish for successful acclimation to increased 

salinity. Also, chloride cells demonstrated hypertrophy with an increased number 

and size of mitochondria. The current findings clarified that increasing salinity 

modulates NKAα3 and AQP3α genes expression in common carp, and the gill 

chloride cells manifest profound histomorphological alteration. These findings are 

critical for the future application to cultivate the common carp in water with high 

salinity, especially in countries suffering from scarce freshwater. 
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INTRODUCTION 

 
Water homeostasis and osmotic adjustment are critical 

for maintaining physiological homeostasis in aquatic life. 

A fish's internal water balance and ion concentration must 

be adjusted for its survival in a hypotonic or hypertonic 

environment (Sheida et al., 2010). Hence, salinity is a 

significant environmental factor directly influencing fish's 

physiological state and functions. Appropriate salinity is 

crucial to the survival and development of fish. Complex 

regional differences make it hard to predict salinity levels 

resulting in complex salinity variation for fish (Brocker et al., 

2012; Xu et al., 2018). For this reason, marine inhabitants 

face significant challenges in establishing appropriate ion 

balance. In marine fish ionocytes or chloride cells participate 

in removing excess ions, and in freshwater fish, chloride 

cells help in ion absorption (Florkin, 2014; Kiran et al., 

2022). Generally, fish exposed to a chronic increase in 

environmental salinity requires the differentiation of 

epithelial transporter cells and an increase in the number of 

chloride cells rich in mitochondria (Fielder et al., 2007), as 

well as changes in transporter gene expression 

(McCormick, 2001). 

Common carp, Cyprinus carpio (C. carpio) is a 

stenohaline freshwater fish that belongs to the order 

Cypriniformes and the family Cyprinidae. It is native to 
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Asia and Eastern Europe, but it has spread globally and 

today lives in North America, Africa, and Europe (Nelson, 

2006). Because it can grow quickly in eutrophic 

environments and survive severe environmental 

conditions, common carp is good for brackish water 

aquaculture (Váradi, 2014) Additionally, it is one of 

economically essential fish species that  s play a crucial role 

in the human diet as a source of protein and omega-3 

polyunsaturated fatty acids (Al-Saeed et al., 2023). 
The primary function of NKA is ion pump by active 

transport; it exports three Na+ ions extracellular and imports 

two K+ ions intracellular against a concentration gradient 

using energy through ATP hydrolysis (Apell, 2019). Many 

previous studies have manipulated the correlation between 

salinity environment modification and NKA in fish (Pan et 

al., 2014; Pham et al., 2016). They recorded increased 

activity and mRNA expression of gills NKA3 (Mancera and 

McCormick, 2000; Richards et al., 2003) as a response to 

the high salinity. 

Aquaporins (AQPs) are transmembrane proteins that 

are essentially considered primarily as water-selective 

channels, simplifying the transmembrane movement of 

water across the cell membrane and, subsequently, 

osmoregulation in mammals and aquaculture. According to 

their preferential permeability to water and solutes, the 13 

discovered mammalian AQPs have been divided into two 

groups (Hara-Chikuma and Verkman, 2008). Last decades, 

many studies shed light on the role of AQPs in aquaculture 

with the change of salinity; they found gills AQP3 

downregulated after exposure to the high salinity of 

Japanese Medaka, (Ellis et al., 2019). 

There is scarce data about the molecular mechanism of 

salinity stress tolerance in common carp. Therefore, 

identifying and characterizing the genes and regulatory 

factors involved in this process is essential. In this study, 

NKAα3 and AQP3α mRNA expression and changes in the 

chloride cells through histomorphological methods were 

evaluated on the gill tissues of common carp after 14 days 

of exposure to 10 ppt salinity. 

 

MATERIALS AND METHODS 

 

Experimental design and sample collection: Healthy 

Common carp, C. carpio fingerlings (average weight 10 ± 

2 g) were obtained from a private fish farm and delivered 

to the Aquatic Laboratory of Veterinary Medicine, South 

Valley University, Qena, Egypt. The fish were reared under 

laboratory conditions (salinity = 0.2 ppt) in a porcelain tank 

recirculation system for three weeks. Then, the fish were 

divided into two experimental groups, with 30 fish/each in 

three replicates, and stocked in six fiberglass aquaria 

containing 120 L of dechlorinated tap water. The first 

group served as a control (salinity = 0.2 ppt); however, the 

salinity-exposed group was reared at 10 ppt. Salinity was 

obtained by dissolving commercial-grade NaCl into 

dechlorinated tap water. Salinity in the tanks increased 

gradually by 3 g/L per day until the final concentration was 

reached. An electrical conductivity meter was used to 

monitor a constant salinity concentration throughout the 

experiment. Fish were maintained in their final salinity for 

14 days. The fish were fed twice daily with commercial 

floating pellets (Grand Aqua, Egypt) containing 45% 

protein at a feeding rate of 3% of their body weight. 

After 14 days, the fish were euthanized using eugenol, 

and the gills of both groups were carefully excised (n = 9 

fish/each group). For qPCR gene expression analysis, 30 

mg of gill tissue was used with three biological repeats. The 

samples were stored in RNAlater (Qiagen) and then 

transferred to a -80°C freezer. For histological 

examination, gill samples were preserved in glutaraldehyde 

(90 mL, 0.1 M Na-phosphate buffered formalin and 10 mL, 

2.5% glutaraldehyde). 

 

RNA extraction, cDNA Synthesis, and Real-Time 

qPCR: Following the manufacturer's recommendations, 

RNeasy® Mini kit (QIAGEN, Germany, Cat. No. 74104) 

was used to extract total RNA from gill tissue. The quantity 

of RNA obtained was evaluated by using Nanophotometer 

(NanoDrop Technologies, Wilmington, DE) (Implen 

GmbH, Germany), and purity was assessed by an 

OD260/OD280 nm absorption ratio >1.95. Messenger 

RNA expression of C. carpio NKAα3 and AQP3α genes 

was measured using real-time RT-PCR. For this purpose, 1 

μg of each RNA sample was reverse transcribed to 

complementary DNA (cDNA) in a VetitiTM 96 well thermal 

cycler, using a RevertAid First Strand cDNA Synthesis Kit 

(Thermo Scientific). The cDNA was kept at -80°C until 

further use. For real-time PCR amplification, each reaction 

included 1.5 μl of cDNA. SYBR Green from HERA PLUS 

SYBR® Green qPCR Kit (Willowfort, England) was used 

to detect specific PCR products. Real-time RT-PCRs were 

performed using Stratagene Mx3005p® real-time qPCR 

detection system (Agilent Technologies, USA). The 

reaction contained a total of 20 μl consisting of 10μl of 2× 

SYBR® Green, a final volume of 1 μl of each primer (10 

μM of forward and reverse) of the gene of interest (Table 

1), 1.5 μl of cDNA template, and the balance of sterile 

nuclease-free PCR grade water.  

C. carpio beta-actin and elongation factor 1-α were 

used as housekeeping references to normalize expression 

levels between samples. All reactions were run in duplicate 

(3 samples per tank). The fold change was determined by 

the 2−ΔΔCt method (Livak and Schmittgen, 2001).  

 

Preparation of resin embedding specimens for semithin 

and ultrathin sectioning: This was performed according 

to Soliman (2021) and Abd-Elhafeez et al. (2021). 

Ultrathin sections were stained after dissolving the resin 

with a saturated alcoholic solution of sodium hydroxide for 

10 minutes at room temperature. H&E staining was 

performed according to the method of using 1% glacial 

acetic acid for 2 minutes after hematoxylin staining. Other 

semithin sections were stained with toluidine blue, 

Heidenhain’s iron hematoxylin, and methylene blue 

(Suvarna et al., 2013). H&E and toluidine blue were used 

as general stains. Methylene blue (Lee et al., 2000) and 

Heidenhain’s iron hematoxylin were used for the 

identification of mitochondria in the osmoregulating cells 

(chloride cells). 

 

Chloride cell counting: Chloride cell count was 

performed using Image J software (Version 1.53i). Cell 

count was estimated/at 6000 µm2 according to the 

following procedure:  
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Table 1: Primers used in the analysis of qPCR.  

Gene Forward primer (5′–3′) Reverse primer (5′–3′) Annealing 
temperature 

References 

AQP3α TCCCTGTGTACTTTCTGTTCCAAAC CAGCATATTCATACATTGCATCATGGT 60 (Monsang et al., 2019) 

NKAα3 GGCAAGAGATGGGCCAA GCTGGCTCATCTTCGGT 58 (Sinha et al., 2012) 

β-actin GATTCGCTGGAGATGATGCT GATGGGGTACTTCAGGGTCA 60 (Schyth et al., 2006) 

EF1α GGAGCCCAGCACAAACATG TTACCCTCCTTGCGCTCAAT 60  (Mráz, 2012) 

1- In the open window of Image J software; select” 

analyze menu” then” Set scale” to detect known distance. 

2-  The selection tools were used to mark the used area. 

3- From Analyze menu,” choose “measure” to estimate 

the surface area.  

4- From the “Plugin menu,” choose “Analyze: and “Grid” 

was used to divide the section for counting.  

5- From the “Plugin menu,” choose “Analyze: and “Cell 

count” to detect cells number.  

6- The number of mitochondrial was estimated at 78.82 

and 88.21 μm2 for control and treated groups, 

respectively.  

 

Coloring of transmission electron microscopy (TEM) 

images was performed according to previously described 

methods (Soliman, 2021).  

 

Statistical analysis: Statistical analysis was conducted 

using Graph-Pad Prism (GraphPad 8.0.1 Software, San 

Diego, CA, USA). Significant differences between the 

control and saline group observations were analyzed using 

Student’s t-test. Data were expressed as mean ± standard 

error of the mean, and statistical significance was P<0.05. 

The data were validated for normality and homogeneity of 

variance by the Shapiro-Wilk normality test and 

Kolmogorov-Smirnov normality test.  

 

RESULTS 

 

Na+K+ ATPase and Aquaporin 3 genes mRNA 

expression: Exposure to elevated saline level, 10 ppt for 

14 days, markedly affected the osmoregulation of common 

carp. Homeostasis and osmoregulation are functions of the 

gills, the main osmoregulatory organ, and there was a 

significant (P<0.001) upregulation of NKAα3 and AQP3α 

mRNA expression in gill tissue of saline-exposed fish 

compared to the control group (Fig. 1A and B, respectively). 

 

Chloride cell counting: Fig. 2 illustrates the number of 

gill's chloride cells in control and treated groups after 

exposure to 0.2 and 10 ppt salinity, respectively. The 

number of chloride cells significantly increased in C. carp 

after high salinity exposure compared with a control group. 

Consequently, the increase of chloride cells is strong 

evidence of these cells' essentiality for osmoregulation and 

homeostasis. 

 

Quantitative analysis of mitochondria per area (μm2): 

Table 2 shows the number of mitochondria in chloride cells 

of the gill filament. Mitochondria showed a highly 

significant (P<0.05) increase in fish treated with 10 ppt 

compared with that treated with 0.2 ppt. 
 
Table 2: Number of mitochondria in 0.02 and 10ppm salinity-treated fish 

Group Number Area (μm2) 

0.2 ppt 18 78.82 
10 ppt 97 88.21 

Histomorphology of chloride cells: As shown in Fig. 3A 

and B, chloride cells increased visibly after 14 days of 

increased saline exposure in gill filaments stained by H&E 

compared with non-exposed fish. Furthermore, chloride 

cells in filaments of gills stained with toluidine blue are 

easily recognized by their large size and hypertrophic 

changes after saline exposure compared with control fish, 

as illustrated in Fig. 4A and B. Additionally, the bioactivity 

of chloride cells was evidenced by abundant mitochondria 

(granular cytoplasm), easily identified after staining with 

Heidenhain’s iron hematoxylin (Fig. 5A and B) after 

raising the salinity to 10 ppt for 14 days.   

 

 
 

Fig. 1: Effect of salinity on gill Na+/K+-ATPase α3 (A) and AQP3α (B) 

expression in common carp after 14d of 10ppt saline exposure (0.2 ppt 
set for the control group). The level of each target gene was normalized 

to the geometric mean of the normalization genes EF1a and β-actin, and 

they are presented relative to the control group (value of 1.0). Data are 
presented as mean ± standard error of the mean (n = 3). Statistically 
significant factor effects (P<0.05) are noted by asterisks in the saline-

exposed group (*** P<0.001). 
 

 
 

Fig. 2: Effect of salinity on chloride cell number in control (0.2 ppt) and 
treated (10 ppt) groups. Data are expressed as Mean ± SEM (n = 3 per 
treatment, independent t-test) *** P<0.01, vs. Control group). 
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Fig. 3: Semithin 
sections of gill filaments 

stained by H&E. (A) A 
control sample of gill 
chloride cells (arrows). 
(B) Increased chloride 
cells (arrows) of gill 
filaments as a response 
to increased salinity. 

 

 
 

Fig. 4: Semithin 

sections of gill filaments 
stained by toluidine 
blue. (A) Control gill 
chloride cells (arrows). 
(B) Chloride cells 
(arrows) are 
hypertrophied and 
increase in number as a 
response to increased 
salinity.  

 

 
 

Fig. 5: Semithin 
sections of the gill 
filaments were stained 
by iron hematoxylin. 
(A) Control gill chloride 
cells (arrows). (B) 
Chloride cells (arrows) 
are hypertrophied and 
increase in number with 
increased mitochondria 
(granular cytoplasm) as 
a response to increased 
salinity. 

 

 

Fig. 6: Semithin 
sections of gill filaments 

stained by methylene 
blue. (A) Control gill 
chloride cells (arrows). 

(B) Chloride cells 
(arrows) undergo 
hypertrophy with an 

increase in number and 
an increase in 
mitochondria (dark 
granular cytoplasm) as a 

response to increased 

salinity. 
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Fig. 7: Ultrathin sections of gill filaments. (A). Chloride cells (blue) are rich in mitochondria (m). (B) Chloride cells (blue) undergo hypertrophy with 
increased mitochondria (that acquired tubular cristae) in response to increased salinity. 

 

Similarly, gill filaments stained by methylene blue show 

well-defined chloride cells with numerous mitochondria 

(dark granular cytoplasm) after salinity (0.2 and 10 ppt) 

exposure (Fig. 6A and B). For additional clarification, 

colored ultrastructural changes of the chloride cells were 

recorded by using TEM. Fig. 7A and B show numerous 

enlarged mitochondria with acquired tubular cristae in 

response to increased salinity tolerance. 

 

DISCUSSION 

 

Gills contain complicated channel epithelial functions 

such as regulating acid-base and nitrogenous waste 

excretion and water and gas exchange (Evans et al., 2005; 

Yasir et al., 2021; Aziz et al., 2022). Furthermore, gills are 

the most important osmoregulatory organs that essential for 

delivery of O2 to blood-forming organs (Kazmi et al., 

2023). The number, size, and distribution of chloride cells 

in gill epithelium may be changed significantly as the need 

for ion transport and permeability change (Carmona et al., 

2004). When fish are subjected to diverse abiotic stresses, 

such as a salinity challenge, gills are the primary site for 

sensing stress signals and initiating signaling cascades at 

the molecular level. Fish can regulate the gene expression 

of channel proteins and the morphology of gill epithelium 

to facilitate stress tolerance (Kültz et al., 1995). Salinity is 

an inherent physicochemical ecological factor of water and 

is extremely important for the survival, development, and 

growth of fish. According to previous studies, high salinity 

is the main contributor to the alteration of physiological 

function in aquamarine. For instant, exposure of Mrigal 

Carp (Cirrhinus mrigala) to high salinity for 90 days alters 

the antioxidants status by downregulation of glutathione 

(GSH), peroxidase (POD), superoxide dismutase (SOD), 

and catalase (CAT) along with total proteins were 

remarkably reduced in the kidneys, gills, and liver tissues 

(Kiran et al., 2022; Raza et al., 2022). 

To better understand what limits the salinity tolerance 

of different fish species, it is essential to understand the 

regulation of gill NKA and AQP3, as both are known to be 

primary effectors of osmoregulation (Jeong et al., 2014). 

However, there is limited information on NKA and AQP3 

in gills and their expression during salinity exposure in 

common carp. A study on the immune staining of NKA and 

AQP3 in the common carp kidney showed a direct 

relationship between environmental salinity and the 

intensity of the immune staining. Both are involved in the 

physiological response to environmental salinity (Salati et 

al., 2014). In the current study, gill tissues were examined 

by RT-qPCR analysis at two different degrees of salinity 

(0.2 ppt as a control group, and 10 ppt as a salinity-exposed 

group) in an importantly economical fish, the common 

carp. 

Increased salinity exposure induces molecular and 

cellular changes in the gills of freshwater teleosts. During 

such a situation, the osmoregulatory action of NKA 

maintains homeostasis within the body by excreting Na+ 

from the cell and transferring K+ into the cell (Jeong et al., 

2014). The function of NKA has been studied in the gill 

and kidney of multiple species of fish including tilapia 

(Hwang et al., 1998), spotted green pufferfish (Lin et al., 

2004), eel (William et al., 2006), sea bass (Giffard-Mena et 

al., 2008), and medaka (Kang et al., 2008). Since NKA is 

in the gills, increased expression of NKA in gills after 14 

days of exposure to 10 ppt saline is probably the result of 

the excretion of ions that flow into the body across the thin 

epithelia of the gills. The current findings revealed 

upregulation of NKA gene expression in the gills of fish 

exposed to hypersalinity compared with the corresponding 

control indicating the ability of common carp to 

acclimatize to hypersalinity. These results also signify a 

vital role in salinity acclimation (Singer et al., 2007). This 

upregulation of sodium pump transcripts in response to 

salinity exposure may be critical for maintaining elevated 

gill NKA activity over the 14 days of the salinity 

acclimation period (Shepherd et al., 2005). Salati et al. 

(2011) noted that the activity of NKA in the C. carpio gill 

was changed during exposure to different percentages of 

saline. Previous studies noted similar patterns of increase 

in NKA α-subunit mRNA expression in Nile Tilapia 

(Mohamed et al., 2021) at 10 ppt after 10 days and at 11 

ppt salinity in rainbow trout (Singer et al., 2007). These 

findings are similar to the transient elevation seen in 

Atlantic salmon (D'Cotta et al., 2000), rainbow trout 
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(Richards et al., 2003), and killifish (Scott et al., 2004; 

Scott and Schulte, 2005). Furthermore, the osmoregulatory 

response varies in other carp species, for example Cyprinus 

carpio haematopterus (Amur carp) tolerates the change in 

salinity more than common carp as it showed better growth 

performance and can survive 100% up to salinity 5 ppm. In 

addition, they showed highest food conversion rate when 

reared in salinity 15 ppm for 90 days (Singh et al., 2020). 

In contrast to the results of the current study, higher 

levels of NKA were noted in freshwater as opposed to 

brackish water (15 ppt) acclimated spotted green pufferfish 

(Lin et al., 2004). It should be noted that euryhaline fish, 

like the spotted green pufferfish, have physiological 

mechanisms to adapt themselves to different levels of 

salinity, but common carp, a stenohaline freshwater fish, 

can adjust to elevate levels of salinity. Therefore, increased 

NKA expression in gill tissue may be a compensatory 

response to the increased absorption of ions. While 

common carp can maintain ion balance upon gradual 

salinity exposure, the associated changes in gill function, 

including sodium pump activity, may be energetically 

expensive (Sangiao-Alvarellos et al., 2006); however, an 

increase in gill NKA activity is an integral part of 

successful acclimation to increased salinity. 

AQP3 in the gills of teleosts provides water channels 

for the entrance and outflow of water. As a result, gills with 

a high concentration of AQP3 protein in the epidermal cells 

have a higher water flow rate than gills with a lower 

concentration of AQP3 protein. AQP3 may be involved in 

enhancing water absorption in stenohaline fish. It is also 

important in enabling water transfer between cells (Agre, 

2006). The relocation of common carp to a greater saline 

environment is followed by an increase in AQP3 mRNA 

expression as a result of the gills sustaining effective 

osmotic homeostasis. However, Jeong et al. (2014) noted 

an elevated expression of AQP3 in gills 6 days after 

transfer from 5 to 30ppt saline in pufferfish. Similar results 

have been noted in studies investigating protein activation 

in teleost gills, such as saltwater tilapia (Watanabe et al., 

2005) and European eel (Lignot et al., 2002), where AQP3 

was expressed in the gills. At elevated levels of 

environmental salinity, fish drink large amounts of 

seawater to get water and monovalent ions across their 

intestinal epithelia; however, excretion of excess ions is 

primarily through the chloride cells of the gills 

(McCormick, 2001; Grosell, 2006). 

In this study, salinity exposure stimulated marked 

changes in the number, morphology, and ultrastructure of 

chloride cells in gill tissue after 14 days of a saline 

challenge. This indicates the osmoregulatory capacity of 

these cells to maintain a hydromineral balance in the gills 

of common carp. Additionally, examination of the 

morphology and ultrastructure of gill tissue revealed 

increased mitochondria and elongation of the cristae and 

acquiring tubular profile. This indicates an increase in the 

cristae surface where ATPase synthase is necessary for the 

generation of ATP (Paumard et al., 2002). Generation of 

ATP is essential to maintain the function of energy-

dependent channels, particularly AQP3, as well as the 

sodium pump which requires NKA activity. Reduction of 

glycolysis and ATP biosynthesis occur in AQP3-knockout 

mice (Hara-Chikuma and Verkman, 2008). Additionally, 

increased numbers of mitochondria in chloride cells are 

evidence for the availability of large amounts of energy for 

the Na+ and K+ pumps with the help of ATPase (Shikano 

and Fujio, 1998). Furthermore, an increased number and 

size of these cells confirm the ability of common carp to 

perform osmoregulation and homeostasis in a high-saline 

environment (Ghahremanzadeh et al., 2014). 

Multiple studies support the results of the current study 

and note that a saline challenge is combined with an 

increase in the number and density of chloride cells in the 

gills of common carp (Al-Hilalli and Alkhshali, 2019), 

Oreochromis mossambicus (Lee et al., 2000), and juvenile 

Australian snapper (Fielder et al., 2007). However, another 

study demonstrated an increase in chloride cells at 15 –20% 

salinity, with cell numbers declining at a higher (36%) 

salinity level. The negative relationship with 36% salinity 

may result from acclimatization with the salinity change 

(Güner et al., 2005). 

 

Conclusions: The current study is an attempt to estimate 

the response of common carp to hypersalinity (10 ppt) for 

14 days. Common carp showed acclimatizing ability 

toward salinity challenge by upregulation of NKAα3 and 

AQP3α genes, which are responsible for ion and water 

maintenance and homeostasis, respectively. Furthermore, 

the chloride cells in gills tissue (The main osmoregulatory 

organ) increased in number in addition to the 

histomorphological changes of hypertrophy and an 

increase in the number and size of mitochondria. The 

present findings bridged the gap between hypersalinity and 

molecular, histomorphological mechanisms to 

hypersalinity exposure in common carp. 
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