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 This study developed a nomogram model utilizing dairy cow-level risk factors to 

predict the risk of Mycobacterium avium subspecies paratuberculosis (MAP) 

infection. MAP antibody status was detected by ELISA in 1,589 dairy cows on 

commercial farms in Henan Province, China. Dairy Herd Improvement (DHI) data 

was also collected for each cow. Univariate analysis was used to identify MAP risk 

factors and multivariate logistic regression with backward bootstrap screening was 

used to determine the independent predictor for inclusion in the nomogram model. 

Model performance was evaluated by area under the receiver operating 

characteristic curve (AUC), calibration plots, and decision curve analysis. Finally, 

1,481 cows with complete data were included, with a 24.9% MAP positive rate 

(n=369). The nomogram model demonstrated good discrimination (AUC 0.71) and 

accuracy (70.2%). Calibration was excellent (Hosmer-Lemeshow χ2=3.26, P=0.92), 

and decision curve analysis indicated this predictive model has clinical utility for 

diagnostic testing. The nomogram predicted individual MAP risk based on routinely 

available DHI data including age, milk production, mammary health status, milk 

losses, and milk fat. Our study provides a method for screening high-risk dairy cows 

and developing intervention strategies based on DHI reports. 
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INTRODUCTION 

 

Mycobacterium avium subsp. paratuberculosis (MAP) 

is a Gram-positive, ubiquitous, obligate intracellular and 

intestinal pathogen which can cause paratuberculosis or 

Johne’s disease (JD) (Rathnaiah et al., 2017). A chronic 

intestinal causing by MAP infection mainly occurred in 

ruminants and many other species, including rabbits, 

horses, pigs, and deer (Ozsvari et al., 2020). Moreover, 

MAP infection has been associated with human Crohn’s 

disease and ulcerative colitis (Pierce, 2018). In China, the 

detection rates of 14.2% and 11.2% were recorded in dairy 

cows and Tibetan Sheep respectively (Cheng et al., 2020; 

Ma et al., 2019). Paratuberculosis causing by poor milk 

production, discarded milk, early culling, veterinary 

services, and labor costs had resulted in a huge economic 

losses, Paratuberculosis significantly decreased the 

economic development by 461-1,940 EUR/case in France 

(Dufour et al., 2004). 

The main clinical symptoms of paratuberculosis in 

dairy cows include persistent diarrhea, progressive weight 

loss and milk yield decreasing. While, not all animals 

exposed to MAP show clinical signs (Nielsen and Toft, 

2009). The diagnosis method of paratuberculosis include 

clinical diagnosis and subclinical infection diagnosis. 

Subclinical infection diagnosis is essential to achieve 

control of paratuberculosis. In adult cows with chronic 

diarrhea is often indicative of this disease. In the 

laboratory, antigen and antibodies are often used for 

diagnosing MAP subclinical infection. Antigen-based 

tests can be made by isolating the pathogens from feces or 

diseased tissue, by histological features study of the 

lesions, and by polymerase chain reaction (PCR) assays 

(Vilar et al., 2015). However, as MAP shedding can be 

intermittent, the sensitivity of these methods depends on 

the development processes of the disease (Nielsen, 2008). 

Serum- and milk- ELISA may potentially be useful for 

detecting subclinical paratuberculosis in lactating dairy 

cows, with good sensitivities and specificities compared 

to fecal culture, as well as its high efficiency and cost 

effectiveness (Hendrick et al., 2005). 

In dairy cows, milk production and composition are 

the two most important economic traits. Although 

variation in milk production traits and functional traits 
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have a major genetic component (Raven et al., 2014). 

Many studies have found that MAP was associated with 

dairy cows’ milk production and several well-known milk 

components closely, such as milk fat, milk protein, 

Somatic cell count (SCC), and etc. (Machado et al., 

2018). Furthermore, milk is an ideal sample material for 

experiments, as milk is obtained non-invasively from 

dairy cows regularly (Milovanović et al., 2020). Published 

articles have developed a mixed model based on milk 

production and milk composition changing, which has a 

higher ability for MAP predicting and distinguishing 

(Machado et al., 2018). However, poor visualization of 

intuitive may inhibit its potential applications. 

Nomogram is a statistics-based tool, that consists of 

multiple risk factors in a graphical display, and is used to 

simply predict the overall probability of a specific 

outcome (Shi et al., 2020). Nomograms based on multiple 

logistic regression or the Cox Proportional Hazards 

regression model are widely used to calculate the risk of 

clinicopathological cancer features and have been 

developed to assess the survival rate of patients with 

cancer (Song and Fu, 2019). 

With the above background, we used MAP infection 

data (defined by serum-ELISA results) to analyze the 

possible risk factors of dairy cow level, and established a 

nomogram prediction model. Here, we aimed to establish 

a visualization and efficient model for MAP, identify 

high-risk dairy cows and provide opportunities for timely 

intervention. 

 

MATERIALS AND METHODS 

 

Sample size: The sample size was determined by the 

number of independent variables in the prediction model. 

The sample size is at least ten-fold more than the number 

of independent variables (2). Assuming that each factor 

requires at least 10 cases for verification and the follow-

up loss rate is 10%, calculated by the formula: 

13×10÷0.9=144, therefore, the suitable sample size should 

be at least 144 cases.  

1598 dairy cows from 12 dairy herds from Henan 

subjected to MAP testing were provided by the Henan 

Dairy Herd Improvement Center (HNDHI) between April 

2020 and May 2021. Samples submission was voluntary 

by ranchers and based on animals that shown MAP-like 

illness. Subjected dairy cows were classified as infected 

solely on serum MAP ELISA (IDEXX Laboratories Inc., 

Maine, USA) obtained, positive or negative, according to 

the manufacturer’s instructions. 

 

Explanatory variables: At the same time, Collect the 

lactating dairy cows current month and last month’s DHI 

reports (Except for new lactating cows) as the serological 

test. The following information and data were extracted, 

including Birth date, Lactation numbers, Daily milk 

production, Fat and protein percentage in milk, Milk 

losses, Milk urea nitrogen values, Days in milk, WHI, and 

Total estimated milk production. Two consecutive SCC 

values to assess the mammary gland status of the dairy 

cows. WHI values to evaluate the performance level of 

the cows in the groups. Using the current and last milk 

production values to assess the stage of lactation. The 

variables explanation shown in Table 1. 

Statistical analyses: Only dairy cows with complete data 

were included in the statistical analysis. 

In the present study, statistical analyses, construction, 

validation and evaluation of the prediction model were 

performed in R 4.0.2 software (R Foundation, Vienna, 

Austria, www.r-project.org). Continuous variables are 

presented as median and range (M (P25, P75)). Univariate 

logistic analysis was performed to identify MAP-related 

risk factors. The variables with p <0.1 in the univariate 

logistic analyses were further assessed by multivariable 

logistic regression with a backward stepwise method based 

on the Akaike information criterion (AIC) minimum, in R 

4.0.2 software. In univariate logistic regression analysis, 

factors with a p -value less than 0.1 (p < 0.1) are selected 

for inclusion in a multivariate logistic regression analysis. 

Subsequently, within the multivariate logistic regression 

framework, only factors demonstrating a p -value less than 

0.05 (p < 0.05) are retained in the final model. 
 

Nomogram constructed: A prediction nomogram to 

assess the risk of MAP was constructed based on the 

results from the final multivariable logistic regression 

using the rms package (Li et al., 2021) in R 4.0.2 

software. Before determining the final model, the variance 

inflation factor of each variable was calculated. 
 

Model performance evaluation: The established model 

of performance focusing on discrimination, calibration, 

and clinical usefulness was analyzed. The predictive 

ability of the model for MAP in cows was performed by 

calculating the area under the curve (AUC), using the 

pROC package (Robin et al., 2011) in R 4.0.2 software, 

where 0.5< AUC <0.7 indicates that the model’s 

distinguishing ability is low; 0.7< AUC <0.9 indicates a 

moderate ability and AUC>0.9 reflects a higher 

discrimination ability (He et al., 2021).  

In addition, the calibration curve was drawn, and 

1000 bootstrap validations were performed to assess 

predictive accuracy. The Hosmer-Lemeshow test was 

used to evaluate the calibration of the prediction model. P 

>0.05 revealed a small difference between the predicted 

value of the model and the actual observation, indicating 

the model calibration is good (Crowson et al., 2016). 

Finally, the clinical effectiveness of the model was 

evaluated by clinical decision curve analysis, using the rmda 

package (Shao et al., 2023) in R version 4.0.2, to determine 

the clinical utility of the nomogram by quantifying the net 

benefit at different threshold probabilities. 
 

RESULTS 
 

After exclusion, 1481 dairy cows were eligible and 

included in this study. Out of the included cases, 369 cases 

exhibited MAP serology positive, accounting for about 

24.9% of the total cases (Table 2). 13 variables were 

statistically analyzed, and the significant variables derived 

from the univariate analysis (p<0.1) were further subjected to 

multivariate logistic regression analysis. Following the single 

factor analysis, significant differences were observed in Days 

of lactation, Lactation stage, Number of lactations, Milk 

losses, Mammary gland status, Daily milk production, within 

herd index (WHI), and Milk fat. All of these significant 

factors were included in multivariate analysis, using a 

backward stepwise method, based on the AIC minimum. 



Pak Vet J, xxxx, xx(x): xxx. 
 

 

3 

Table 1: Predictor variables definition 

Predictor variables Definition 

Mammary gland status -Uninfected Last time SCC＜500 × 103cells/mL and this time SCC＜500 × 103cells/mL or New lactating diary cow 
SCC＜500 × 103cells/mL 

Mammary gland status - New infection Last time SCC＜500 × 103cells/mL and this time SCC≥500 × 103cells/mL or New lactating diary cow  

SCC≥500 × 103cells/mL 
Mammary gland status - Chronic mastitis Last time SCC ≥ 500 × 103cells/mL and this time SCC≥ 500 × 103cells/mL 
Mammary gland status - Cure Last time SCC ≥ 500 × 103cells/mL and this time SCC＜500 × 103cells/mL 

WHI-High level WHI values ＞100 
WHI-Low level WHI values ＜100 
Lactation stage-UP Current milk production - last milk production ≥ 0 

Lactation stage-Down Current milk production - last milk production < 0 

 
Table 2: Diary cattle and disease characteristics 

Category All Negative Positive 

 N=1481 N=1135 N=346 
Ages(years)    

< 3.5y 711 (48.0%) 622 (54.8%) 89 (25.7%) 

≥ 3.5y 770 (52.0%) 513 (45.2%) 257 (74.3%) 
Days of lactation 183 (100; 265) 177 (97; 259) 204 (113; 300) 
Birth seasons    

Winter (Dec - Feb) 501 (33.8%) 375 (33.0%) 126 (36.4%) 
Spring (March - May) 301 (20.3%) 236 (20.8%) 65 (18.8%) 
Summer (Jun - Aug) 264 (17.8%) 198 (17.4%) 66 (19.1%) 

Autumn (Sep - Nov) 415 (28.0%) 326 (28.7%) 89 (25.7%) 
Daily milk production (Kg)   

< 28.4 509 (34.4%) 352 (31.0%) 157 (45.4%) 

≥ 28.4 972 (65.6%) 783 (69.0%) 189 (54.6%) 
Milk fat (Kg)    

< 4.3 764 (51.6%) 571 (50.3%) 193 (55.8%) 
≥ 4.3 717 (48.4%) 564 (49.7%) 153 (44.2%) 

Milk protein (Kg)    
< 3.7 1249 (84.3%) 966 (85.1%) 283 (81.8%) 
≥ 3.7 232 (15.7%) 169 (14.9%) 63 (18.2%) 

Number of lactations    

1th 646 (43.6%) 565 (49.8%) 81 (23.4%) 
2th 384 (25.9%) 278 (24.5%) 106 (30.6%) 

3th 249 (16.8%) 167 (14.7%) 82 (23.7%) 
4th 125 (8.44%) 76 (6.70%) 49 (14.2%) 
5th 45 (3.04%) 27 (2.38%) 18 (5.20%) 

6th 32 (2.16%) 22 (1.94%) 10 (2.89%) 
Mammary gland status   

Uninfected 1213 (81.9%) 968 (85.3%) 245 (70.8%) 

New infection 118 (7.97%) 82 (7.22%) 36 (10.4%) 
Category All Positive Negative 
 N=1481 N=1135 N=346 

Chronic mastitis 81 (5.47%) 35 (3.08%) 46 (13.3%) 

Cure 69 (4.66%) 50 (4.41%) 19 (5.49%) 
Milk Urea Nitrogen(mg/dl)   

< 15.7 632 (42.7%) 492 (43.3%) 140 (40.5%) 

≥ 15.7 849 (57.3%) 643 (56.7%) 206 (59.5%) 
Milk losses (%)    

< 0.16 944 (63.7%) 774 (68.2%) 170 (49.1%) 

≥ 0.16 537 (36.3%) 361 (31.8%) 176 (50.9%) 
Lactation stage    

Up 626 (42.3%) 504 (44.4%) 122 (35.3%) 

Down 855 (57.7%) 631 (55.6%) 224 (64.7%) 
WHI    

Low level 787 (53.1%) 574 (50.6%) 213 (61.6%) 

High level 694 (46.9%) 561 (49.4%) 133 (38.4%) 
Estimated total milk production (Kg)   

< 9193 1119 (75.6%) 888 (78.2%) 231 (66.8%) 
≥ 9193 362 (24.4%) 247 (21.8%) 115 (33.2%) 

 
According to the results of backward stepwise 

regression, the model containing Age, Milk fat, Milk 

losses, Mammary gland status, and Daily milk production, 

the minimal value of AIC is 1474.1. No collinearity was 

observed between screened variables (max VIF <2.7). In 

the multivariate analysis, the result revealed that ages (p= 

0.01), milk fat (p= 0.04), Milk losses (p = 0.03), chronic 

mastitis (p< 0.001), and milk production (p= 0.01), were 

significant independent risk factors. The univariate and 

multivariate analyses are listed in Table 3. 

Table 3: Univariate and multivariate analyses of predictors for MAP 

 Univariate analysis Multivariate analysis 

Characteristics OR (95% CI)  P OR (95% CI) P 

Age(years) 

  Less than 3.5  Ref Ref Ref Ref 

  More than 3.5  3.50 (2.68-4.58) <0.001 1.80 (1.16-2.81) <0.001 

Days of lactation  1.00 (0.98-1.02) <0.001   

Birth seasons  
  Winter (Dec - Feb) Ref Ref    

  Spring (March - May)  0.82 (0.58-1.15) 0.25    

  Summer (Jun - Aug) 0.99 (0.7-1.40) 0.96    
  Autumn (Sep - Nov) 0.81 (0.6-1.11) 0.19    

Milk production daily (Kg) 
  Less than 28.4 Ref Ref Ref Ref 

  More than 28.4  0.54 (0.42-0.69) <0.001 0.62 (0.47-0.81) 0.002 

Milk fat (Kg)  
  Less than 4.27 Ref Ref   

  More than 4.27  0.80 (0.63-1.02) 0.08 0.77 (0.59-0.99) 0.04 

Milk protein (Kg)     
  Less than 3.65 Ref Ref   

  More than 3.65  1.27 (0.93-1.75) 0.14   
Number of lactations      

  1th  Ref Ref   

  2th  2.66 (1.93-3.67) <0.001   
  3th  3.43 (2.41-4.87) <0.001   

  4th 4.50 (2.93-

6.90) 

<0.001   

  5th  4.65 (2.45-8.82) <0.001   

  6th  3.17 (1.45-6.94) 0.004   

Mammary gland status  
  Uninfected  Ref Ref Ref Ref 

  New infection  1.73 (1.14-2.63) 0.009 1.47 (0.76-2.01) 0.37 
  Chronic mastitis  5.19 (3.27-8.24) <0.001 3.22 (1.66-4.78) <0.001 

  Cure  1.50 (0.87-2.59) 0.15 1.05 (0.59-1.87) 0.82 

Milk Urea Nitrogen (mg/dl)     
  Less than 15.7 Ref Ref   

  More than 15.7 1.13 (0.88-1.44) 0.34   

Milk losses (%)     
  Less than 0.16 Ref Ref Ref Ref 

  More than 0.16 2.22 (1.74-2.84) <0.001 1.39 (1.02-1.89) 0.02 

Lactation stage  
  Up Ref Ref   

  Down 1.47 (1.14-1.88) 0.003   
WHI     

  Low level  Ref Ref   

  High level  0.64 (0.5-0.82) <0.001   
Estimated total milk production (Kg)    

  Less than 9193 Ref Ref   

  More than 9193 1.79 (1.37-2.33) <0.001   

 

A model containing these independent predictors was 

developed and presented as a nomogram, which included 

5 significant predictors for MAP prediction (Fig. 1). The 

assignment of predictors in the nomogram is shown in 

Table 4. The score for each predictive factor was obtained 

from the nomogram, and the total score was calculated as 

the sum of these individual scores. The corresponding 

total score values show the predicted probability of MAP. 

Then we established ROC curves to evaluate the 

diagnostic value, sensitivity and specificity, and threshold 

value  (Fig.  2).  The  area  under  the  curve  (AUC) of the  
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Table 4: Assignment table of predictors in nomogram 

predictors Assignment 

Age 1= < 3.5y; 2= ≥ 3.5y 
Daily milk production 1= < 38.4Kg; 2= ≥ 38.4Kg 
Mammary gland status 1= Uninfected; 2=New infection;3= Chronic 

mastitis; 4= Cure 
Milk losses 1= < 0.16%; 2= ≥ 0.16% 
Milk fat 1= < 4.3Kg; 2= ≥ 4.3Kg 

 

 
 

Fig. 1: Risk nomogram model for predicting MAP. 
 

 
 
Fig. 2: The ROC of the risk nomogram model. 
 

ROC curve or C-statistics—was 0.71 (95% CI: 0.68-0.74) 
and its sensitivity and specificity were 0.63 and 0.70, 
respectively, indicating a certain predictive effect. The 
threshold value of the ROC curve was 0.25. If the 
probability of risk was greater than 0.25, the risk of MAP 
was high. 

The performance of this nomogram was graphically 
evaluated by a calibration curve. The calibration 
prediction curve fitted with the ideal curve (Fig. 3), which 
demonstrated the relatively acceptable goodness-of-fit of 
the nomogram. In addition, the Hosmer–Lemeshow 
goodness-of-fit test showed χ2 =3.26, p = 0.92, indicating 
no significant difference between predicted and observed 
probabilities, which had good consistency. 

Decision curve analysis (DCA), a novel method, was 
used to evaluate the clinical efficiency and benefits of the 
prediction model. Black indicates that all samples are 
negative, therefore the net benefit is 0. Grey indicates that 
all samples are positive. The x-axis represents the 
threshold probabilities of dairy cows. As shown in Fig. 4,  

 
 
Fig. 3: The calibration degree of the risk nomogram model. 

 

 
 
Fig. 4: The decision curve of the risk nomogram model. 

 
most areas of the decision curve of the prediction model 
were greater than 0 and the model has a net benefit 
between about 17 and 65% of threshold probabilities, 
which indicates that the model has clinical value. All 
these results demonstrated that our model had a certain 
predictive value. 

 

DISCUSSION 

 
In this study, we developed a simple but certain 

discriminating, well-calibrated prediction model for MAP. 

This model was developed based on DHI information of 

the dairy cows and focusing on the changes of the dairy 

cow production performance and milk components. To 

estimate the risk of MAP, the final model show a good 

discrimination and calibration performance. The ROC was 

0.71 and the Hosmer–Lemeshow test showed this model 

has a good fitting trend, therefore no significant difference 

was observed between the predicted and the actual 

outcomes (χ2=3.26, p = 0.92). 

SCC per mL of milk was widely used as an indicator 

of the incidence of mastitis (Qanbari et al., 2014). 

Usually, SCC = 500 × 103cells/mL was used as a 
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threshold for judging the clinical mastitis status of dairy 

cows (Alhussien et al., 2021). However, a strong 

association between SCC and MAP antibodies has been 

found in UK Holstein-Friesian cows (Pritchard et al., 

2017) and Danish cows (Baptista et al., 2008). In US 

dairy cows, animals with higher SCC were more 

positively relative with MAP (Machado et al., 2018). In 

this study, we used the SCC value of the sampling month 

rather than SCC values directly, and the previous month 

to evaluate the udder status of the dairy cows according to 

the threshold. Chronic clinical mastitis group was here 

associated with test results strongly (3.22 95% CI: 1.66-

4.78), which was in agreement with previous reports 

generally (Rossi et al., 2017), However, there has been no 

research on the paratuberculosis makes the host 

susceptible to mastitis, or intramammary infection can 

help initiate paratuberculosis (Barber et al., 2019). SCC-

based assessment of dairy cows' mammary gland status 

may be a useful factor for predicting MAP. 

MAP antibody distribution in dairy cows is age-

related, young calves are more susceptible to MAP 

infection, while older animals are more likely to become 

seropositive(Faruk et al., 2020). In this study, animals > 

3.5 years old were at a significantly higher risk of being 

positive (1.80, 95% CI: 1.16-2.81). Although there are 

few studies about the age distribution of MAP serum 

antibodies, similar results have been reported in milk-

ELISA studies. One study found that the prevalence of 

0.33% for dairy cows was less than 2 years of age and 

0.94% for 5 years old (Nielsen et al., 2013). Results from 

another study suggest that dairy cows which > 4 years old 

were more likely to be MAP positive, relative to animals 

which < 4 years old (Machado et al., 2018). Probably 

because MAP has different pathogenicity at different age 

stages in dairy cows (Matthews et al., 2021). 

In the present study, higher fat content in milk was 

associated with decreased odds of seropositivity (0.77, 

95% CI: 0.59-0.99) and the results were consistent with 

that previously reported in different studies (Rasmussen et 

al., 2021; Vidic et al., 2013). However, whether the 

reduction in the level of milk fat can increase the odds of 

seropositivity remains controversial. Several 

investigations have reported some seropositivity of dairy 

cows with higher milk fat compared with seronegative 

animals (Johnson et al., 2001; Wiszniewska-Łaszczych et 

al., 2020). While in another study found that it was 

normal that the presence of antibodies can cause both a 

decrease and an increase of the milk composition 

(Eisenberg et al., 2015). 

Health, physiological, genetic, environmental, and 

other factors are able to affect milk production in dairy 

cows (Garcia and Shalloo, 2015). Thus, MAP infection, as 

a disease factor, can affect animal productivity. In the 

present study, animals yielding > 28.4Kg of milk per day 

were at a significantly lower risk of being positive (0.62, 

95% CI: 0.47–0.81) compared to the baseline category. 

Our result was consistent with previous studies (Pritchard 

et al., 2017). However, previous studies that investigated 

the association between milk production and 

seropositivity showed different results. Milk yield in 

seropositive dairy cows is significantly higher than in 

seronegative dairy cows (Hendrick et al., 2005; Johnson 

et al., 2001). These studies used different populations, 

different sample sizes, and different diagnostic methods. 

This may explain the inconsistency in part between 

different study results. 

Milk loss is an estimated value, which is based on the 

difference between the expected and the actual production 

(Adriaens et al., 2021). Milk loss is associated with 

individual dairy cows milk SCC (Chen et al., 2021). This 

relationship has been used to estimate the milk loss due to 

subclinical mastitis at the herd level and also increase 

farmers’ awareness of the mastitis. Here, Milk loss > 

0.16% per day were at a significantly higher risk of being 

positive (1.39, 95% CI:1.02-1.89) compared to the 

baseline category, also clearly revealing MAP causing 

economic loss due to milk loss from the side. Little work 

has been reported in the literature on the relationship 

between MAP and milk loss. From this study, milk loss 

may be a useful predictor for MAP. 

No statistically significant association between birth 

season and odds of positivity for MAP was found, which 

was in line with previous in 691 herds (Machado et al., 

2018), not at par with the result in 4 Holstein herds and 24 

Jersey herds (Zare et al., 2013). This may be related to 

different geographical locations, different sanitary 

conditions, and management strategies in the tested 

populations. 

To the best of our knowledge, this is the first report of 

the nomogram predictive model in MAP. Although the 

current study has strengthened and contributed to the 

current study, certain limitations should be noted. Firstly, 

we constructed the prediction nomogram based on the 

DHI information of the dairy cows, and the accuracy of 

the data analyzed relied on the quality and completeness 

of input DHI information. Secondly, the database did not 

release the data about gastroenteritis incidence records 

and treatment, stool score, which are the main clinical 

signs of MAP. Thirdly, this is a single-center study and 

our model may not be applied to other centers. Therefore, 

in future studies, the sample size and experimental time 

should be extended and the practicability of the 

nomogram model should be verified by a multi-center 

study. 

 

Conclusions: In summary, our study provide a powerful 

predictive tool in the form of a nomogram model, which 

leverages dairy cow-level risk factors to accurately 

forecast the risk of Mycobacterium avium subspecies 

paratuberculosis (MAP) infection. By integrating MAP 

antibody status data obtained through ELISA testing and 

comprehensive Dairy Herd Improvement (DHI) data for 

1,481 dairy cows in Henan Province, China, we have 

successfully identified key risk factors and crafted an 

effective predictive model. Through meticulous 

evaluation, this model has exhibited not only good 

discrimination and accuracy but also impeccable 

calibration, affirming its reliability for clinical 

application in diagnostic testing. With its capacity to 

individualize MAP risk assessment using readily 

available DHI information, encompassing factors such as 

age, milk production, mammary health status, milk loss 

and milk fat, our nomogram not only aids in identifying 

high-risk dairy cows but also provides a framework for 

the strategic development of intervention plans based on 

DHI reports. 
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