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 Recent therapeutic approaches in animal diseases involve stem cell-based therapies 

which are showing promising results, particularly with the use of mesenchymal stem 

cells (MSCs). Our study aimed at isolating and characterizing adipose tissue-derived 

stem cells (ADSCs) in goats and sheep, evaluating their characteristics mesenchymal 

nature, and adipogenic, chondrogenic, and osteogenic differentiation potentials. For 

this purpose, subcutaneous adipose tissues were collected from the inguinal region 

under sterile conditions from five healthy adult sheep and five goats each slaughtered 

at a slaughterhouse. MSCs were isolated, cultured, and differentiated into adipogenic, 

chondrogenic, and osteogenic lineages, followed by respective histochemical staining 

to confirm differentiation. In passage 3 (P3), the surface markers CD44, CD90, 

CD105, and CD45 were analyzed using flow cytometry to characterize mesenchymal 

properties. The cells expressed CD44, CD90, and CD105 but did not express 

hematopoietic marker CD45, confirming their mesenchymal nature. This study 

successfully identified  ADSCs from sheep and goats as mesenchymal stem cells and 

characterized their strong trilineage differentiation potential, highlighting their strong 

therapeutic capabilities and revealing interspecies differences in MSCs properties. 

These findings provide valuable insights for future MSCs-based therapeutic 

applications in veterinary regenerative medicine, particularly for economically and 

clinically important species. 
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INTRODUCTION 

 

Stem cells hold significant importance for therapeutic 

applications across various clinical domains and can easily 

be characterized by their self-renewing capacity and 

differentiation potential (Gattegno-Ho et al., 2011). 

Among various stem cell types, mesenchymal stem cells 

(MSCs) are greatly studied for their strong regenerative 

capabilities in both medical and veterinary sciences. As a 

result, both basic and applied research on MSCs is rapidly 

advancing with the growing need for alternative therapeutic 

sources, with significant progress being made in the area of 

various stem cell sources (Gugjoo et al., 2016; 2017; 2018). 

MSCs can be isolated from diverse tissue sources such as 

adipose tissue, bone marrow, dental pulp, cord blood, 

Wharton’s jelly, and amniotic fluid (Özen and Sancak, 

2014). Among these, adipose tissue (AD) and bone marrow 

(BM) remain popular due to their abundance and ease of 

extraction. The tissue source significantly impacts the 

concentration, proliferation, and differentiation properties 

of MSCs (Ribitsch et al., 2017; Sasaki et al., 2018; ). 

Adipose-derived mesenchymal stem cells (ADSCs) 

are considered important due to their ease of isolation, high 

yield, and differentiation potential, making them potent 

sources in tissue engineering and regenerative therapies 

(Nıcpoń et al., 2014; Stachura et al., 2021). These cells, 

exhibit similar morphology to fibroblasts and express 

specific mesenchymal markers including CD90, CD73, and 

CD105 while lacking hematopoietic markers like CD45, 

CD34, and HLA-DR, as standardized by the International 

Society of Cellular Therapy (ISCT) (Karaöz and İnci, 

2014). Preclinical studies involving domestic animals like 

dogs, pigs, sheep, and goats have shown promising 

translational results, offering closer parallels to human 

clinical outcomes compared to laboratory rodents (Hotham 

and Henson, 2020; Williams et al., 2024). Furthermore, 
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advancements in gene editing and sequencing for farm 

animals have further facilitated their use in biomedical 

research (Polejaeva et al., 2016). Sheep, in particular, is 

considered an ideal model for studying human systemic 

conditions, including cardiovascular, skeletal, and 

neurological disorders, due to their physiological 

resemblance to humans (Divincenti et al., 2014). ADSCs 

derived from sheep and goats have demonstrated 

significant potential in addressing conditions such as bone 

injuries, cartilage damage, and skin injuries, with region-

specific advantages highlighted by studies on infrapatellar 

fat pads (Vahedi et al., 2016). 

The current study aims to isolate and characterize 

ADSCs from both sheep and goats, focusing on their 

proliferation and tri-lineage differentiation potential 

(adipogenic, chondrogenic, and osteogenic). By 

establishing their distinguishing features, this research 

work seeks to explore their potential for futuristic clinical 

applications in veterinary medicine. 

 

MATERIALS AND METHODS 

 

Ethical statement: The current study was conducted 

following ethical approval from the Animal Experiments 

Local Ethics Committee of Firat University, Türkiye 

(Protocol no: 2019/l07, Decision No. 161, dated 

04.09.2019). All procedures opted for during the study 

complied with the ethical guidelines of the committee. The 

study was funded by the Firat University Scientific 

Research Projects Unit under grant number VF-20.08. 

 

Isolation and culture of adipose stem cells (ADSCs) from 

adipose tissue: Adipose tissue samples were aseptically 

collected from five healthy sheep and five goats (1.5 years 

old, 45–50 kg) at the ELET A.S. slaughterhouse by a 

modified as described by Ozden Akkaya et al., 2023. 

Inguinal subcutaneous fat tissue was dissected using a sterile 

scalpel, placed in Hank's Balanced Salt Solution (HBSS) 

supplemented with 2% penicillin-streptomycin and 0.2% 

amphotericin B, and transported to Firat University Stem 

Cell Laboratories within one hour. In the laboratory, tissues 

were washed thrice with sterile phosphate buffer saline 

(DPBS) supplemented with 2% penicillin-streptomycin and 

0.2% amphotericin B, minced, in a laminar airflow cabinet 

flow (Biosafety Cabinet class II) and digested with Type I 

collagenase (10 mg/10 ml HBSS with 1% penicillin-

streptomycin and 0.1% amphotericin B) for 2 hours at 37°C 

in a water bath with continuous stirring. The digested 

material was filtered through 40 µm strainers, and cells were 

centrifuged, washed with DPBS, and resuspended in a sterile 

complete medium (88% RPMI medium+10% FBS+1% 

Penicillin/Streptomycin+0.1% Amphotericin B). Cells were 

seeded in T25 flasks and incubated at 37°C with 5% CO2 to 

establish primary adipose-derived stem cell cultures. 

Adipose tissue cells reaching 85–90% confluence were 

passaged by detaching with Trypsin/EDTA, neutralizing 

with complete medium, centrifuging, and counting before 

reseeding into new flasks. Cells were cultured till passage 3 

before the characterization.  

 

Characterization of ADSCs by flow cytometry analysis: 
Flow cytometric analyses were conducted following the 

techniques described by Carroll et al., (2007). Briefly, 5 µl 

of flow cytometry dye and 20 µl of anti-CD44, CD90, 

CD105, and CD45, antibodies (BD-Biosciences) were 

added separately to a tube containing 100 µl of adipose 

tissue cell mixture suspended in DPBS. The mixture was 

vortexed, incubated at room temperature for 20 minutes, 

and then supplemented with 1.5 ml of isoflow fluid. After 

centrifugation at 1500 rpm for 5 minutes, the supernatant 

was discarded, and the pellet was resuspended in a few 

drops of isoflow fluid to detect and quantify the expression 

of markers of interest. 

 

Differentiation and histochemical analysis of ADSCs: 
At the end of the third passage, the cells were trypsinized 
and induced for osteogenic, chondrogenic, and adipogenic 
differentiation. Von Kossa, Alcian blue, and Oil red O 
staining protocols were applied respectively for 
histochemical analysis. 

 
Osteogenic differentiation: ADSCs from passage 3, were 
cultured in a CO₂ incubator for four weeks in an osteogenic 
differentiation medium (StemPro Osteogenesis Kit, Gibco) 
supplemented with 1% penicillin/streptomycin at a density 
of 3000 cells/cm² in culture dishes. At the end of the 
differentiation period, cells were assessed for osteogenesis 
using Von Kossa staining. For this purpose, cells were 
fixed with 4% paraformaldehyde for 30 minutes, washed 
with distilled water, and treated with silver nitrate under 
UV light for 60 minutes. After a subsequent wash, 1% 
sodium thiosulfate was applied to remove excess silver, and 
differentiation was visualized using an inverted microscope 
(Olympus CKX53) (Kibria et al., 2020). 

 
Adipogenic differentiation: ADSCs were seeded at a 
density of 3000 cells/cm² in culture plates and cultured for 
three weeks in adipogenic differentiation medium 
(StemPro Adipogenesis Kit, Gibco) supplemented with 1% 
penicillin/streptomycin. The differentiation was estimated 
microscopically by detecting the presence of intracellular 
lipid vacuoles using Oil Red O staining (Sigma Aldrich). 
For this purpose, briefly, the cells were fixed with 4% 
paraformaldehyde, rinsed thrice with distilled water, and 
washed with 50% alcohol. Subsequently, the cells were 
stained with Oil Red O (0.1% in 60% isopropanol)(5 mM) 
for 20 minutes, followed by decolorization with 50% 
alcohol and a final rinse with distilled water. Lipid vacuoles 
were visualized using an inverted microscope (Olympus 
CKX53) (Nawaz et al., 2020). 

 
Chondrogenic differentiation: For chondrogenic 
differentiation, ADSCs were cultured for three weeks in a 
chondrogenic differentiation medium (StemPro 
Chondrogenesis Kit, Gibco) supplemented with 1% 
penicillin/streptomycin at a seeding density of 3000 
cells/cm² in 6 well culture plates. The medium was replaced 
with freshly prepared media every 3rd day. Chondrogenic 
differentiation was assessed microscopically using Alcian 
Blue staining. At the end of the culture period, the cells 
were fixed with 4% paraformaldehyde for 30 minutes, 
washed with distilled water, and stained with Alcian Blue 
for 30 minutes. After staining, the cells were rinsed with 
distilled water and passed through graded alcohols (80%, 
96%, and 100%) for dehydration. Chondrogenic 
differentiation was confirmed using an inverted 
microscope (Olympus CKX53). 
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RESULTS  
 

Culture of ADSCs and morphology: Images of MSCs 

were taken at 24 hours post-culture, both before and after 

washing (Fig. 1a-d). By 48 hours, cells had adopted a 

spindle-shaped morphology. On day 3, asymmetrical 

division (3 cells) was observed, a characteristic feature of 

stem cell division (Fig. 2a-b). After approximately one 

week, stem cell foci (fibroblast colony-forming units, 

CFU-f) were evident (Fig. 2c-f). Cells reached 85-90% 

confluence by two weeks, at which point passaging was 

performed, and morphological images were taken with an 

inverted microscope (Fig. 3). Goat-derived MSCs 

exhibited faster proliferation and confluence compared to 

sheep-derived MSCs. 
 

 
 

Fig. 1: Inverted microscope images (10X) of sheep primary culture cells 
for the first 24 hours before (a) and after (b) washing. Goat Primary 
culture cells for the first 24 hours before (c) and after (d) washing (10X) 

(Scale bars: 80µm). 
 

 
 

Fig. 2: Asymmetric cleavage, representing stem cell-specific form of cell 
division (a-b). Fibroblast colony forming (CFU-f) image of sheep MSCs 
20X(c) 10X(e), fibroblast colony forming (CFU-f) image of goat MSCs 

20X(d) 10X(f). (Scale bars: 80µm). 
 

Flow Cytometric Analysis: MSCs isolated from sheep 

and goat adipose tissues were analyzed for surface markers 

using four antibodies. Forward Scatter Chanel (FSC) and 

Side Scatter Chanel (SSC)  expansion, along with gating, 

were performed (Fig. 4). Both sheep and goat MSCs 

expressed CD44, CD105, and CD90, while CD45 was not 

detected. This immunophenotyping confirmed the identity 

of MSCs from both species (Fig. 5-6). 

 
 
Fig. 3: Adhesion image of sheep MSCs after 3rd passage (P3) 10X(a), 

image of 85-90% confluency 10X(c), attachment image of goat MSCs after 

3P 10X(b), image of 85-90% confluence 10X(d). (Scale bars: 80µm). 

 

 
 
Fig. 4: Flow cytometric analysis of Sheep (P1=65.23%) and Goat 

(P1=69.79%) MSCs, display of FSC and SSC opening, gating process. 

 
Osteogenic Differentiation: MSCs were cultured in an 

osteogenic medium, and after 9-10 days, both control and 

osteogenic cultures reached near-confluence. Calcium 

deposits, indicated by Von Kossa staining, were observed 

after 21 days (Fig. 7-8), confirming effective osteogenic 

differentiation in both species.  

 
Adipogenic Differentiation: After reaching 60-70% 

confluence in passage 3, MSCs were cultured in an 

adipogenic medium. Fat vacuoles were visible  by  day  14,
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Fig. 5: CD105(A), CD90(B), 

CD44(C) positivity histogram, 
CD45(D) negativity histogram 

status of mesenchymal stem 
cell markers of MSCs isolated 
from sheep adipose tissue. 

Red peak: unstained control, 
green peak: belongs to the 
corresponding antibody. 

 

Fig. 6: CD105(A), CD90(B), 
CD44(C) positivity histogram, 
CD45(D) negativity histogram 

status of mesenchymal stem 

cell markers of MSCs isolated 
from the fat tissue of goat. Red 

peak: unstained control, green 
peak: belongs to the 
corresponding antibody. 

and Oil-red O staining confirmed adipogenic 

differentiation (Fig. 9-10). However, osteogenic 

differentiation was more efficient than adipogenic 

differentiation in both sheep and goats. 

 

Chondrogenic Differentiation: MSCs cultured in a 

chondrogenic medium showed morphological changes by 

day 15, and proteoglycan-secreting foci were detected on 

day 19. Alcian blue staining on day 21 highlighted the 

mineralized intercellular matrix, a characteristic of 

cartilage (Fig. 11-12). These results suggest the potential 

use of these MSCs for cartilage regeneration in the future.  

 

DISCUSSION 

 

The choice of mesenchymal stem cell (MSC) origin is crucial 

in stem cell research, as it affects the suitability, accessibility, 

and applicability of various studies. Different studies have 

explored MSCs derived from multiple species and tissues, 

including       horses     (bone marrow)      (Özen et al., 2013), 
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Fig. 7: Sheep MSCs control group Von-Kossa negative 20X (a) 40X (b), 
osteogenic differentiation group Von-Kossa positive 10X (c), 20X (d), 

20X (e), 40X (f). (Scale bars: 60µm). 

 

 
 
Fig. 8: Goat MSCs control group Von-Kossa negative 20X (a) 40X (b), 
osteogenic differentiation group Von-Kossa positive 10X (c), 20X (d), 

20X (e), 40X (f). (Scale bars: 60µm). 

 
humans (cord blood, adipose tissue) (Nguyen et al., 2022; 

Solali et al., 2024), and porcine peripheral blood 

(Shradhanjali et al., 2022), as well as from amniotic sac 

(Nawaz et al., 2020; Li et al., 2022) and bovine cord blood 

(Raoufi et al., 2010). This diversity reflects the broad range 

of MSCs sources available for research. However, the 

choice of proper tissue and stem cell sources should 

consider various factors like tissue accessibility and 

contamination risks, particularly in veterinary species. 

In our study, adipose tissues from the inguinal region 

of sheep and goats were selected, as they offer advantages 

in ease of access and high cell yield, as reported in previous 

studies (Wu et al., 2001; Arrigoni et al., 2009; Özgenç, 

2019). Despite potential contamination risks in 

slaughterhouse settings, steps were taken to ensure sample 

sterility,   including   disinfection   and   short,   controlled 

 
 
Fig. 9: Sheep MSCs control group Oil Red-O staining negative 20X (a), 
40X (b), adipogenic differentiation group Oil Red-O positive 20X (c), 40X 
(d), adipogenic differentiation group morphological 20X (e ), 40X (f). 
(Scale bars: 60µm). 
 

 
 
Fig. 10: Goat MSCs control group Oil Red-O staining negative 20X (a), 
40X (b), adipogenic differentiation group Oil Red-O positive 20X (c), 40X 
(d), adipogenic differentiation group morphological 20X (e ), 40X (f). 
(Scale bars: 60µm). 
 

handling procedures. The use of antibacterial and 
antifungal solutions, as well as cell isolation in a sterile 
biosafety cabinet, was implemented to mitigate this risk. 
Ren et al., (2012) also focused on the isolation, expansion, 
and differentiation of goat ADSCs and implemented 
protocols compatible with our study.  

The enzymatic method (type 1 collagenase) was used 
for  cell  isolation,  which is commonly preferred for MSC 
extraction due to its higher cell yield compared to non-
enzymatic methods (Conde-Green et al., 2016; Şahin, 
2017). This method was consistent with the literature, and 
the timing of MSC confluency in the present study (around 
two weeks) aligns with findings in similar research 
(Bhurmann et al., 2007; Özgenç, 2019). However, 
differences in confluency times may be attributed to factors 
such as animal breed, age, and adipose tissue location. 
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Fig. 11: Sheep MSCs control group alcian blue negative 20X (a), 40X (b), 
chondrogenic differentiation group alcian blue positive 10X (c), 20X (d), 

20X (e), 40X (f). (Scale bars: 60µm). 

 

 
 
Fig. 12: Goat MSCs control group alcian blue negative 20X (a), 40X (b), 
chondrogenic differentiation group alcian blue positive 10X (c), 20X (d), 
20X (e), 40X (f). (Scale bars: 60µm). 

 

In a study on goats (Abraham et al., 2024), four media 

types including MEM, DMEM/F12, D-LG, and D-HG 

(Gibco) supplemented with 10% FBS were used in a 

humidified 5% CO₂ environment at 37°C. In contrast, our 

study utilized a complete medium (88% RPMI, 10% FBS, 

1% Penicillin/Streptomycin, and 0.1% Amphotericin B) 

under similar conditions, achieving comparable cell 

densities indicating an ease of ADSCs culture under varied 

conditions.   

The cells exhibit fibroblastic morphology which was 

consistent with the findings of Algorta et al. (2024). Flow 

cytometric analysis was performed to characterize the 

surface markers of the MSCs. Positive markers included 

CD44, CD90, and CD105, while CD45 was negative, in 

line with the International Society for Cell & Gene Therapy 

(ISCT) guidelines for MSC identification (Dominici et al., 

2006; Gratwohl et al., 2006). The CD90, CD44, CD105, 

and CD45 antibodies used for flow cytometric 

identification were anti-human and, as reported in previous 

studies (Mastrangelo et al., 2019; Zhang et al., 2020; 

Akpinar et al., 2021), also performed effectively in sheep 

and goats. Can (2014) identified CD44, CD90, CD105, 

CD9, CD10, w4a5, and STRO-1 as positive markers and 

CD45, CD4, CD11a, and CD11b as negative markers in 

mesenchymal MSCs. Çoban et al. (2016) observed 

substantial expression of CD105, CD90, and CD105 genes 

in early culture of MSCs, with reduced expression in later 

stages, while negative markers CD34, CD45, and CD11b 

showed no expression at either stage. Similar to our 

findings, Flow cytometric studies on MSCs by Marx et al. 

(2015), Villatoro et al. (2015),  and Özgenç (2019) 

identified CD44, CD73, CD81, and CD90 as positive 

markers and CD34 and CD271 as negative.  

The differentiation potential of MSCs was also 

investigated, with cells differentiating into bone, cartilage, 

and adipose tissue, consistent with previous studies 

(Bhurmann et al., 2007; Park et al., 2009; Patrikoski et al., 

2013). The study confirmed that differentiation into bone 

occurred by day 21, adipogenesis by day 14, and 

chondrogenesis by day 19. These timeframes are 

comparable to those reported in other studies on MSCs 

from different species.  

The findings in this study are consistent with research 

on the differentiation of MSCs into adipogenic, 

chondrogenic, and osteogenic lineages (Dar et al., 2021), 

where osteogenic differentiation was observed through 

calcium deposition by day 21, adipogenic differentiation 

through fat vacuoles by day 14, and chondrogenic 

differentiation through proteoglycan secretion by day 19. 

Likewise, Ceylan et al. (2017) conducted their study using 

MSCs derived from the umbilical cord stroma of rats, and 

these cells were differentiated into osteogenic, 

chondrogenic, and adipogenic differentiation, with the 

findings revealed by histochemical staining.  

The results indicate that irrespective of the species, 

ADSCs possess a huge potential for therapeutic applications 

in various lineages. A study by Malik et al. (2014) on the 

generation of handmade cloned embryos from adipose 

tissue-derived MSCs in goats provided insights into the 

potential of ADSCs in reproductive cloning, an area closely 

related to tissue engineering and regenerative applications. 

This particular study paves the way toward the strong 

potential of ADSCs as an alternative therapeutic source for 

future applications in domestic animal species. Through, 

more detailed characterization is needed to establish the true 

potential of ADSCs. We assume that future research should 

include in vivo experiments to validate the therapeutic 

potential of ADSCs and expand the scope to explore the 

molecular mechanisms involved in their extensive 

differentiation potential. Investigating long-term stability 

and functionality across species would also enhance 

translational applications. 

 

Conclusions: In conclusion, the present study has 

successfully established and characterized adipose tissue-

derived mesenchymal stem cells from sheep and goats, 

confirming their ability to differentiate into bone, cartilage, 

and adipose tissue. This study advances the understanding of 

the biology of MSCs of veterinary species and establishes 
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grounds for use in future studies involving regenerative 

medicine, therapies, and tissue engineering.  
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