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Zoonotic diseases cause 60% of total infectious diseases and 75% of emerging
infections, and are a core danger to global health security. Climate change,
globalization, and urbanization are also responsible for accelerating the convergence
of determinants between people, animals, and the environment, thus driving the
probability of spillover events. A One Health interdisciplinary approach is essential
for building sustainable disease prevention and control against such multifactorial
threats. To achieve that, artificial intelligence has been a key technology that is
revolutionizing zoonotic and public health early disease detection, surveillance,
diagnosis, and prediction modeling. Al enables faster epidemic forecasting, better
resource allocation, and gene tracking using technologies such as computer vision,
machine learning, deep learning, and natural language processing. Al is also
employing predictive statistics and bioinformatics to support drug and vaccine
discovery. Al in human, animal, and environmental health systems holds exceptional
promise for enhancing health equity and epidemic readiness to counter threats such
as data privacy, algorithmic bias, and infrastructure inequality. The objective of this
review is to critically evaluate the growing contribution of Al in the fight against
zoonotic and public health diseases, examine the ways in which it can be incorporated
into the One Health model, and outline directions for developing morally acceptable,
transparent, and sustainable Al-based healthcare systems.
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INTRODUCTION

One of the most potentially dangerous risks to global
health security, zoonosis, accounts for about 60% of all
infectious human illnesses and 75% of newly emerging
diseases (Naithani et al., 2024). By expanding the interfaces
between people, animals, and the environment, amplifying
factors such as climate change, urbanization, and
globalization increase the risk of spillover events (Sievers et
al., 2024). Neglected zoonoses alone are responsible for an
estimated 10 million Disability-Adjusted Life Years
(DALYs) each year and are a source of substantial economic
loss, particularly in low- and middle-income countries that
depend on livestock. This long-standing problem is costly
(Noguera Zayas et al., 2021). To drive research, improve
surveillance, and allow the development of life-saving
vaccines for people and animals, effective management is
greatly dependent on the "One Health" model—a long-
overdue multidisciplinary partnership bringing together the
human, animal, and environmental health disciplines

(Stephen, 2024). This present shortage of authoritative staff,
in particular for commonly overlooked conditions like
brucellosis and salmonellosis, reflects the serious necessity
for high-level surveillance mechanisms and strategic
planning of global public health activity, where Al can play
a pivotal role in real-time monitoring, early detection, and
predictive analytics (di Bari ez al., 2022).

Because zoonosis are the origin of the vast majority of
emergent infectious threats, early warning mechanisms and
surveillance must be developed to minimize the effect and
prevent mass epidemic outbreaks (Al Mutairi et al., 2024).
It is also possible for public health workers to react quickly
when infectious behavior is detected, and thus preventive
measures in the form of targeted immunization drives and
higher hygiene standards can be adopted (Ouamba et al.,
2023). Epidemiological trends and also alleged spillover
incidents are promoted by extreme environmental
modification, such as urbanization and global warming.
They are under surveillance, only under close observation
(Meadows et al., 2023). Though this colossal requirement,
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resource disparity, and nature of zoonotic transmission
chains continue to render good international vigilance
challenging, a sign of the imperative need for a One Health
functioning plan driven internationally (Erkyihun and
Alemayehu, 2022).

Above all, Artificial intelligence (Al) today is a game-
changer that makes the sophisticated analytical capability
required to perform this One Health mandate possible by
taking epidemiology and health care decision-making to
unprecedented levels (Coiera and Liu, 2022). This powerful
synergy engages the potential of Al to speed response and
improve patient results, ranging from clinical decision
support for improved patient sorting and predictive analytics
for disease trend forecasting to high-speed automated
synthesis of evidence (Malik and Singh, 2024). Al enhances
monitoring and assists in addressing challenging issues such
as antibiotic resistance by uniting complete, large,
multisectoral information in the animal, human, and
environmental realms. This enhances system resilience as
well as equity (Irrgang et al., 2023). The One Health spirit
has to guide future use of AI; however, if it is to anticipate
and counteract legitimate concerns regarding its impact on
the environment and ability to exacerbate social injustices so
that its benefits bring real, lasting health justice (Ernawati et
al., 2025; Fiaz et al., 2025; Kumar and Sanjaya, 2025).

Since zoonotic diseases account for the bulk of the
emerging infectious threats, this review seeks to critically
assess emerging global health security risks produced by
them and illustrate the necessity of a globally coordinated
'One Health' operational strategy to stem them. Its main
thesis would be in evaluating Al as a game-changer
technology and its possibilities. It will focus especially on
how the One Health imperative of early warning and swift
response can be more suitably met by unleashing the
potential of Al in predictive analysis, high-level surveillance,
and multisectoral fusion of information. Moreover, the
evaluation will also recommend prescriptions for
sustainability and ethical needs required in an attempt to
make equal access to Al leading to prolonged health justice
and immunity to future zoonotic crises.

Artificial intelligence in health sciences: In health
science, Al is a pioneering, revolutionary force that applies
high-end computational models and algorithms to simulate
human intelligence and significantly improve care
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provision (Rekha, 2021). The general term covers a range
of specific technologies, which together amount to
enhanced administrative efficiency, tailored treatment, and
diagnostics (Bansal and Sindhi, 2025). The essence of
disease path and patient outcome predictive analytics is
machine learning (ML) capable of allowing systems to
learn through experience (Dixon et al., 2024). The
subcategory Advanced utilizes multi-layered networks
with the ability to process intricate data. These are the
foundations in designing complex detection algorithms and
diagnosis interpretation of medical images (Greenfield et
al., 2021). Expert systems simulate human medical
decision-making using enormous knowledge bases to assist
in diagnosis and proposing treatment (Vhatkar ez al., 2025).
Computer vision enables the ability of machines to
examine visual information to identify abnormalities in
medical images and aid in surgery, and natural language
processing (NLP) transforms the review of unstructured
patient data and clinical notes to enable meaningful
findings from massive volumes of text data (Pindi, 2018).
Although these coupled Al technologies are exciting, their
successful implementation in the health sector depends on
addressing urgent concerns about data privacy, ethics, and
proper testing needed to achieve reliable Al systems
(Chukwurah et al., 2025). These major and general
technologies are given in Table 1.

Meanwhile, mass global health crises have driven the
application of Al in life sciences from an abstract tool to a
needed, multi-dimensional engine (Glicksberg and Klang,
2024). This innovation has made Al a pillar in a number of
preeminent disciplines: most self-evidently, the creation of
telemedicine and improved diagnostics have significantly
enhanced clinical application; the efficiency by which
therapeutic leads can now be found has maximized
medication development; and the capability of Al to
subtyping disease and stratifying patients according to
complex omics information has improved personalized
medicine (Kaur, 2025). Al's potential for creativity is seen
in the outstanding growth in development and
implementation being driven globally by nations like the
USA and China (Undie et al., 2024). However, to ensure
that this technology continues to develop further, legal
boundaries and issues of ethics have to be strictly
controlled so that development is harmonized along with
the correct ethics handling (Begishev and Shutova, 2025).

Table I: Cross-Sectoral Uses of Human, Animal, and Environmental Disease Management.

Al Technology Primary Function One Health Domain Studies Applications References
Machine learning  Predictive analytics and Human. animal BlueDot, Early zoonotic outbreak detection (COVID-19, Ebola, (Efthymiou,
(ML) outbreak modeling ! HealthMap Nipah); spillover hotspot identification 2026)
) Image and pattern CNN-based Improved pathogen identification and medical imaging (Guo et al,
Deep learning (DL) recognition Human diagnostic systems  interpretation (97% accuracy) 2023)
Real-time epidemic EpiScan, ProMED, . . (Srivastava et
Natural language . . X . Early warning of outbreaks from analysis of news and
. intelligence from Human social media ‘ ) al., 2025)
processing (NLP) . social media streams
unstructured data analytics
- Automated visual data ~ Animal, Google wildlife Monitoring of wildlife, species identification, spillover ~ (Layman et
Computer vision . N N s N . :
interpretation environmental insights, SpeciesNet risk mapping al., 2023)
Expert systems Decision support through Human, veterina Diagnostic expert Assist clinicians in zoonotic disease diagnosis and triage (Guo et l,
pertsy rule-based inference ! 4 systems 3 g 2023)
. Prlvacy-pr.eservmg . GIObZ_" genomic Combines genomic and epidemiological data across (Zhang et dl,
Federated learning collaborative model Human, animal surveillance N . N 2024)
L S regions without breach of privacy
training initiatives
Explainable Al Model transparency and LIME, SHAP T I . " (Mirchandani,
(XAl) trust building Cross-sectoral integrated DSS Maintains interpretability in Al-informed policy 2025)
Al-driven genomics Vaccine and therapeutic Human. animal AlphaFold, Every vaccine and drug target for zoonoses is emerging (Imam et al,,
and drug discovery candidate identification i DeepMind models  rapidly 2024)
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Its use in predictive and preventive medicine, where its
process is changing health care from a reactive to a
proactive effort, is the most significant use of this
capability (Assadi and Nabipour, 2014). With accurate
examination of medical images and electronic health
records (EHRs), Al algorithms, namely Convolutional
Neural Networks (CNNs), significantly improve early
detection of disease and frequently detect disease at stages
not feasible with conventional approaches (Adedamola et
al., 2025). Besides, by using people’s genetic and lifestyle
data to build prediction models, technology facilitates the
implementation of personalized treatment programs and
preventives. This makes intervention a matter of early
stages, particularly when treating chronic diseases (Suura,
2025). The evolution of Al in this field, nonetheless,
requires strict adherence to data privacy and ethical
regulation since algorithmic discrimination needs to be
appropriately contained to ensure fair provision of health
services and access, especially to marginalized groups
(Voola et al., 2024). Various features of Al are given in
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Role of Al in combating zoonotic diseases: The use of Al
in the fight against zoonotic disease is a significant force
multiplier that significantly expands early warning and
surveillance systems (Zhang et al., 2024). Public health
response is made possible due to Al-driven systems like
BlueDot and HealthMap that demonstrate the value in
using large, real-time data sets in attempting to issue timely
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warnings regarding potential disease danger (Maclntyre et
al., 2023). Through repeated inputs such as environmental
information (e.g., ecological and climatic conditions) for
spillover hotspot detection and veterinary information for
surveillance of potential reservoir animals, these
sophisticated Al models are capable of outbreak prediction
as well as identification of intricate patterns of transmission
(Ghosh and Dasgupta, 2022). By implementing this
complete integration of information, there is a guarantee of
enhanced, all-around disease control system and precision
of projections (Liu and Wang, 2020). But just as with
nearly every application of Al to medicine, the realization
of such titanic advantages would only be achieved by
industriously overcoming genuine practical difficulties of
resource allocation, informational privacy, and continuing
challenges of ethics.
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Fig. 3: One Health Artificial Intelligence System Flow. From data
acquisition to predictive insights.

Al's multi-functional role in early warning of threats
and predictive modeling, via cutting-edge ML and Deep
Learning techniques to model and forecast zoonotic threats,
is leading this cutting-edge surveillance (Pillai et al., 2022).
These models, more accurate and sensitive than
conventional methods, are critical to forecast spillover
threats for such pathogens as COVID-19, Nipah, Ebola,
and Avian Influenza with accuracy (Reddy et al., 2022).
For instance, algorithms such as Naive Bayes have proved
extremely consistent in predicting patterns in vectors to
inform broad public health policy. Al works best when
used to track vector-borne diseases such as malaria and
dengue by transforming numerous streams of data into risk
factors and association patterns (Kaur et al., 2023). Al
enables anticipatory surveillance through systematic and
routine monitoring of animal populations and disease
transmission, such that targeted intervention can be
implemented once detected (Ilmaskal and Daswito, 2025).
However, success in implementation also involves solving
basic problems of data standardization, differential
technology access, and continuous ethics problems.

Deep learning-based models used for pathogen
detection from images are one of the ways in which Al
significantly enhances the diagnosis capability against
zoonotic diseases (Sande and Rajguru, 2025). Al models
can process complicated biological data with fearfulness
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through sophisticated models such as CNNs (Naskar et al.,
2025). This leads to almost 97% detection through a
stunning diminishment in false alarms. This technology
innovation surpasses accuracy; Al-driven applications
have also been seen reducing working time by 35% as
compared to normal practice (Oduri, 2021). While
successful integration into current bio-surveillance public
health infrastructure continues to depend upon the
addressing of some of the data standardization issues and
ongoing ethical regulation, such potential for quick
detection of pathogens—along with using large datasets in
outbreak prediction and the identification of risk factors—
is critical to increasing early diagnosis and facilitating rapid
containment (Wajid Fazil, 2025).

Besides, Al is spearheading the proactive zoonotic
disease medicine and vaccine discovery field by
revolutionizing candidate identification using machine
learning and deep learning (Bergquist et al., 2024). Al is
further driving the forward-thinking discipline of zoonotic
disease medicine and vaccine discovery by revolutionizing
candidate identification via machine and deep learning
(Malpani and Telrandhe). By facilitating rapid and accurate
screening of chemical libraries in a bid to identify
interesting compounds, such technologies are central to the
acceleration of molecular docking, a simulation method
critical to drug-target interaction understanding. Together
with this, Al is a very good antigen predictor by browsing
through the pathogen genomes for potential targets that
would provoke a strong immune response, facilitating
vaccine development. Al candidate screening allows one to
achieve a faster and more effective public health response
to emerging zoonotic threats by reducing significantly the
time and expense of medicine development (Posinasetty et
al., 2024). But to preserve human skills and collaborate in
order to overcome obstacles such as data privacy and
transparency of models is needed in order to achieve
maximum efficiency of this process (Joseph and Pandey,
2025).

Al in public health disease management: Emerging from
such technical advancements, Al at the same time
simplifies epidemiologic data analysis and is a focal and
disruptive function in disease control of public health
(Kashyap, 2021). ML algorithms can possibly untangle
concealed, nuanced patterns in large data sets, i.e.,
electronic health records (EHRs), patient co-morbidities,
and population health patterns (Fatunmbi, 2024). Such
patterns would then be applied to inform high-priority
public health interventions and resource allocation. Also,
by incorporating mobility patterns, Al models can predict
disease transmission dynamics accurately and identify
probable hotspots and early warning signals of an epidemic
(Ogundipe, 2023). The decision-makers can thereby
adequately address the inherent uncertainties of health
emergencies  through pre-emptive public  health
interventions tailored to subpopulations with particular
risks. However, persistent concerns over data accuracy,
privacy, and algorithmic bias must be addressed in a proper
way such that ethical and effective use of instruments is
guaranteed (Aliyuda, 2022).

Such analytical power has brought the use of Al for
epidemic forecasting to transform public health
interventions and become very effective in addressing TB,
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COVID-19, and flu (Lim et al., 2025). To forecast disease
transmission with greater accuracy than ever before,
multiple machine learning models like deep learning and
ensemble models closely analyze massive amounts of data
(Rahman et al., 2023). Particularly valuable, NLP also
assists by monitoring and analyzing social media and news
unstructured content and serving as a speed early warning
system for newly emerging outbreaks (Munro et al., 2012).
The proper application of such Al models will have to
overcome centuries-long issues of data quality, model
interpretability, and the built-in ethical issues of mass-scale
public health AI systems, even though unavoidable in
simulating the real-time actual spread of pandemics and
seasonality trend predictions (Towfek and Elkanzi, 2024).
Various applications of Al are given in Table 2.

Secondly, Al can be employed to directly provide
healthcare and public health services, revolutionizing
disease management using operating and communication
platforms (Shah, 2024). Al-driven communication
technologies like chatbots and virtual assistants during
health emergencies are real-time triage and information-
dissemination technologies that ensure prompt supply of
the right public health message and rapid response to
queries (Branda et al., 2025). In addition, telemedicine
technology based on AI ensures effective remote
consultation, which significantly enhances access to care
among the underserved populations (Ledford et al., 2024).
While at the same time, usage of predictive analytics
optimizes usage of resources in emergency situations so
that the health systems are able to run smoothly with new
threats arising However, addressing algorithmic prejudice,
overcoming issues of data privacy, and introducing strict
ethical regulation are central to enabling such patient-
facing systems to scale effectively (Shafik, 2025).

Al total effect is indeed a greater appreciation of the
interdependency under the One Health concept—the large
interfaces between people, animals, and the environment
involved in causation of disease (Stephen, 2024). Al
systems have significantly improved real-time surveillance
for disease through continuous monitoring of animal
populations and environmental data. It enables notification
of zoonotic origin and response time quicker than through
conventional means (Guitian et al., 2023). Al provides
data-driven vision needed to guide and augment holistic
interventions like strategic vaccination programs and
improved animal husbandry, through big-data predictive
modeling (Goud et al., 2025). Given that the underlying
ethical considerations of model bias and data privacy are
being taken seriously, such an ability necessarily breaks
cycles of knowledge among human, animal, and
environmental worlds, and thus a genuine holistic approach
to disease therapy can be assured (Boudi et al., 2024).
Besides these general Al technologies, modern
technologies, including programming languages, are also
playing an important role in public health and zoonotic
diseases.

Programming languages for public health and zoonosis:
Python is the most widely used programming language,
accounting for more than 90 percent of contemporary
implementations. The popularity of Python in modern Al-
driven health research is due to extensive libraries for
machine learning, epidemiological modeling, and genomic
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Table 2: Applications of Al in One Health for zoonotic and public health disease management

Disease Primary Al Application Core Technology Objective One Health  Key Achievements References
Host / Used Domain
Reservoir
COVID-19 Humans, BlueDot, Machine learning, Predicting outbreaks Human Identified global outbreak  (Nadhira
(SARS-CoV-2) Bats DeepCOVID, NLP, predictive  and epidemiological patterns days ahead of the  Nazirun et
HealthMap analytics forecasting WHO alert; informed travel al., 2022)

Avian Influenza Poultry,  Random forest Deep learning,

Outbreak zones

warnings

Animal, Reached AUC 0.95 for (Li et al.,

(H5NI, H7N9) wild birds predictive models,  geospatial prediction and risks of environmental outbreak prediction; shortened 2024)
GIS-based ML modeling spillover detection lag by ~2 weeks
Nipah Virus Fruit bats Al-enabled genomic Deep learning,  Viral mutation Animal, human Identified early spillover (Adiga,
analysis ML genomic identification, tracking patterns and high-risk areas 2019)
sequencing reservoir
Ebola Virus Bats, non- ProMED, HealthMap Natural language Early outbreak signal Human, Identified outbreak 9 days  (Pigott et
human NLP analytics processing detection animals before official reporting al., 2014)
primates
Malaria Mosquito  Climate-Al, VectorAl Machine learning, Modeling of vector Environmental, Enhanced regional vector  (Wajid

(Anopheles remote sensing  populations. human control measures; improved Fazil, 2025)
spp.) Forecasting predictive accuracy by 30%
transmission
Dengue Fever  Mosquito Predictive vector ML, High-transmission Environmental, Facilitated pre-emptive (Nalini et
(Aedes modeling systems spatiotemporal  zones identification and human vector control in 6 high-risk al., 2025)
spp.) data fusion seasonal forecasting cities
Brucellosis Cattle, Veterinary Expert systems, Automated case Animal, human Shortened reporting delay  (Millar and
goats, surveillance Al ML reporting, disease by 60%; enhanced detection Stack,
sheep detection in LMICs 2012)
Rabies Dogs, Al-guided vaccination Decision support Optimization of Animals, Cut human cases by 18% in (Cabilla et
wildlife DSS systems, ML vaccine distribution  human pilot areas al., 2025)
strategies
Tuberculosis Humans, CADA4TB, DL Deep learning Automated chest X- Human, Attained 96% diagnostic (Guo et al.,
(Human and cattle radiograph analysis  (CNNs) ray screening and animals accuracy; assisted TB 2023)
Bovine) diagnosis programs in low-resource
settings
Leptospirosis ~ Rodents, Al-based predictive ML, GIS, Outbreak-prone flood Environmental, Increased readiness in (Govan et
livestock ecosystem models  hydrological zones prediction animal tropical flood prone areas  al.,, 2025)
modeling
Antimicrobial  Humans, Al genomic Bioinformatics,  Detection of AMR  Cross-sectoral Improved AMR monitoring (Jancloes et
Resistance animals predictors ML genes and forecasting and antibiotic stewardship  al,, 2014)
(AMR) of resistance pattern networks
African Swine  Pigs, wild Smart pig health Al, ML, computer Continuous herd Animals Identified stress signals prior (Nadeem
Fever (ASF) boars loT sensors vision monitoring and to clinical symptoms; loss et al.,
outbreak prediction reduction by 22% 2024)
Zoonotic Swine, Genomic Al analytics Deep learning, ~ Vaccine strain Human, animal Speeded up vaccine update (Lou et dl.,
Influenza poultry NLP prediction, Viral cycles through predictive ~ 2024)
(HINI, H3N2) evolution tracking modeling
Lyme Disease  Deer, EcoAl predictive Machine learning, Mapping vector Environmental, Improved identification of ~ (Bingham-
rodents, mapping remote sensing  ecology and risk animal new endemic areas Byrne,
Ticks modeling 2025)
MERS-CoV Camels ML-enabled genomic Machine learning, Genomic correlation Animal, human Improve detection and (Guo et al.,
pattern recognition  bioinformatics analysis and response time; cross-border 2023)
surveillance cooperation improvement

NLP: Natural language processing; ML: Machine learning; Al: Artificial intelligence; GIS: Geographic information system.

analysis (Padhi er al., 2023). Key Python frameworks
include PyTorch and TensorFlow for deep learning models,
which include convolutional neural networks (CNNs),
recurrent neural networks (RNNs), transformers, and graph
neural networks (Novac et al., 2022). CNNs are frequently
applied in medical imaging for automated diagnosis of
infectious diseases such as pneumonia and tuberculosis,
while RNNs and transformers are used for predicting
disease outbreaks and patient disease progression
(Banapuram et al., 2024). Similarly, scikit-learn is related
to classical machine learning algorithms, which are used in
infectious disease risk prediction. Random forest and
support vector machine models are commonly engaged to
identify epidemiological risk factors, classify disease
outcomes, and estimate zoonotic transmission probability
by using clinical, demographic, and environmental
databases (Rahman et al., 2023). Pandas and NumPy are
used as core tools for data processing and cleaning in public
health and zoonotic studies. They also handle large

epidemiological datasets, such as case counts, surveillance
records, laboratory results, and environmental variables
(Harouni, 2024). GeoPandas and NetworkX are important
for spatial and network-based epidemiological modeling.
GeoPandas supports geographic mapping of disease
incidence and vector distribution, which helps in the
identification of spatial hotspots. On the other hand,
NetworkX enables the analysis of contact networks among
humans, livestock, wildlife, and vectors, which is more
critical for understanding zoonotic transmission dynamics
(Yap and Biljecki, 2023). In general python is commonly
used in outbreak prediction systems, zoonotic spillover
modeling, clinical risk prediction, and real-time disease
surveillance platforms.

R programming language: R is an important tool in
epidemiology and public health and is widely used for
statistical analysis, Bayesian inference, and infectious and
zoonotic disease modeling (Wang et al., 2024). For
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example, tidverse enables the cleaning and visualization of
surveillance data, allowing for the identification of
outbreak trends and hotspots in diseases such as avian
influenza and brucellosis (Musa et al., 2024). Rstan and
brms estimate production numbers and forecast outbreaks,
while Survival supports time-to-event analysis (Shrestha et
al., 2019). Similarly, deSolve simulates disease spread
under interventions such as vaccination, immunization, and
quarantine.  Shiny enables interactive dashboards
integrating epidemic curves, spatial maps, and predictions
for real-time decision making (Ahmad et al., 2024).
Overall, R facilitates rigorous analysis and predictive
modeling for controlling zoonotic and infectious diseases.

High-performance languages: High-performance
languages such as C++, Java, Julia, and Scala are essential
for Al-based epidemiological models that demand
computational efficiency and scalability (He, 2025). C++ is
widely used at a larger scale for simulations, including the
formation of models of the spread of COVID-19 or avian
influenza in livestock, poultry, and for ultra-fast
phylogenetic placement of pathogen sequences due to its
speed and memory efficiency (Lehtimiki and Martikainen,
2025). Java and Scala are applied in big data public health
pipelines and distributed systems to process large
surveillance datasets from hospitals, laboratories, and
wildlife monitoring programmes (Folasole, 2023). Similarly,
Julia is emerging as a high-performance language for
scientific computing, which offers simpler syntax for
complex mathematical modeling of infectious disease
dynamics (Pal et al., 2024). These languages have a strong
linkage with Python and R through APIs to combine
efficiency with the flexibility in data analysis, machine
learning, and visualization. Their combination enables real-
time outbreak simulations, risk assessment, and predictive
modeling for zoonotic and public health applications.

Overview of Al models and platforms for disease
outbreak prediction, zoonotic spillover, and public
health surveillance: The rapid advancement of Al and
computational modeling has significantly increased the
scientists' ability to predict, monitor, and respond to
infectious disease outbreaks, including zoonotic spillovers
(Rocha et al., 2025). A wide range of I-driven tools and
platforms now exist, targeting different aspects of public
and animal health, from real-time surveillance and
outbreak forecasting to clinical risk prediction and genomic
monitoring (He, 2025). The integration of these tools in
public and zoonotic disease strategies enables early
warning, risk assessment, and informed intervention
planning, particularly in the context of emerging pathogens
and global pandemic threats. The following Table 3
provides a comprehensive overview of these Al models and
platform highlighting the primary purposes of these
models, computation frameworks, and key features.

Al within the One Health framework: This observation
is the central tenet of the 'One Health' concept, which in
effect requires mutual dependency between environmental,
animal, and human health and, as a result, a definite,
harmonized response to complicated world issues
(O’Grady, 2025). This unified approach is crucial with
respect to the more frequent occurrence of pandemics and
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issues such as antibiotic resistance, since problems within
one area will always have ramifications in others (Boban et
al., 2022). In order to build sustainable, evidence-based
health solutions, the design's underlying principles need
genuine collaboration from a variety of disciplines, from
environmental science to veterinary medicine (Heim and
Stiark, 2021). In order to promote disease surveillance,
optimize resource utilization, and enable good policy
decision-making, the value of the method is solely
dependent on possessing full human, animal, and
environmental information incorporated (Matus, 2025).
But issues such as health systems that have broken down
and constant need for long-term political and financial
investment in all sectors are currently hindering the full
potential of One Health (Brown ef al., 2024).

Artificial Intelligence is the technology that enables
the application of the One Health approach in this
important context, mainly through enhanced decision
support systems and inter-sectoral connections of data
(Irrgang et al., 2023). To handle the cases of complicated
challenges like Antimicrobial Resistance (AMR), the
heterogeneous  large-scale  human, animal, and
environmental streams of data should be linked together
(Thakur et al., 2025). Pattern recognition capability and
predictive modeling of Al are required for this. Most
importantly, machine learning uses whole-genome
sequencing to predict trends in AMR and combines
imaging, electronic health records, and real-time monitor
information to provide end-to-end intelligence (Pennisi et
al., 2025). It is augmented by Al-decision support, which
provides predictive information to public health managers
and clinicians to facilitate anticipatory provision of care,
epidemic forecasting, and resource planning (Zare and
Shafaei Bajestani, 2024). Yet, beyond primary issues of
data quality, interoperability, and ongoing requirement for
close ethical control to limit algorithmic bias and secure
professional acceptability, it is essential for the successful
scaling of One Health AI (Galiana et al., 2024).

Finally, Al technologies in the field are transforming
cattle and wildlife zoonotic reservoir surveillance so that it
can pre-emptively warn of impending spillover events
(Galiana et al., 2024). Technologies like Google's Wildlife
Insights, for instance, deploy models trained on millions of
camera-trap photos (e.g., SpeciesNet) to automatically
identify species and quantitatively track changes in density
and behavior in wildlife surveys (Thau ef al., 2019). Virus
onset prediction maps can be built by gathering data at
nearby field sites of geographic "hotspots" and merging
with environmental and land use data (Chakravarti et al.,
2024). Artificial intelligence animal wellness programs
(such as Connecterra's "Ida") on the other hand utilize
animal sensors to track habits and notify in the event of any
deviation that could constitute a zoonotic risk factor, such
as mastitis or tuberculosis (Abdul Ghafoor and Sitkowska,
2021). Despite continued hurdles required by data
imbalance and resource limitation in low-resource settings,
such predictive modeling as Random Forests achieving
high accuracy (AUC of 0.95) in problem detection like
avian influenza in poultry and reduced detection times by
nearly two weeks underscores the capability of Al to bring
clinical, genomic, and environmental data together on One
Health platform to inform both veterinary medicine and
global health security (Nikoukar et al., 2025).
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Table 3: Overview of Al models, tools, and integrated platforms used in disease outbreak prediction, zoonotic spillover analysis, public health modeling,
clinical risk prediction, environmental health monitoring, and genomic surveillance.

Category  Model/Tool Purpose Primary Implementation
Language/  Complexity &

Framework Scalability

Key Features Target References

Species

Use in Veterinary
Research

Outbreak  HealthMap Global disease  Python, R, Moderate: High web- Real-time Livestock Monitoring (llmaskal and
Prediction surveillance Java scraping dependency intelligence, NLP , wildlife, transboundary outbreaks Daswito,
news aggregation humans 2025)
ProMED-mail ~ Emerging disease Python, NLP Low: Human-curated, ML-assisted Livestock Early detection of (Rocha et dl,,
alerts highly accessible classification of , wildlife, emerging animal diseases 2025)
reports humans
EpiForecast Infectious PyTorch,  High: Requires Bayesian hierarchical Livestock Forecasting disease (Wang et al,
disease Stan Bayesian statistical outbreak models , humans spread in specific regions 2022)
forecasting expertise
Zoonotic ~ SpillOver (UC  Viral spillover R, Python  Moderate: Relies on  Risk ranking of Wildlife, Assessing risk of (Budeski and
Spillover  Davis) risk scoring wildlife viral data wildlife viruses livestock pathogens moving to Lipsitch,
livestock 2025)
Viral Forecasting Pandemic PyTorch High: Uses complex ~ GNN:s for host-virus Wildlife, Predicting zoonotic (Johnson et
(Meta) potential Graph Neural interactions livestock emergence from animal al., 2020)
prediction Networks hosts
Zoonotic Risk  Protein JAX Extreme: Requires AlphaFold adaptation Wildlife, Predicting viral protein  (Milton et dl,,
(DeepMind) structure significant GPU for host binding livestock binding to animal 2020)
prediction resources receptors
Epidemiologi PyRoss Compartmental SciPy, Moderate: Flexible but Models with specific Livestock Simulation of livestock  (Adhikari et
cal Models modeling NumPy requires math tuning  interventions , humans disease control measures al., 2020)
Epigrass Spatial epidemic Python Moderate: Requires  GIS-enabled Livestock Mapping regional animal (Halasa &
modeling (NetworkX) GIS/Mapping data epidemic simulations disease outbreaks Diirr, 2017)
Clinical &  DeepPatient Phenotype TensorFlow High: Requires large  Deep learning for ~ Livestock Predicting disease (Cuietal,
Phenotype prediction Electronic Health clinical risk susceptibility in farm 2023)
Records animals
CheXNet Pneumonia PyTorch Moderate: Requires  12I-layer CNN for Livestock Detection of lung (Haque et al,,
(Stanford) detection high-quality X-ray sets image analysis (cattle, infections in herd health 2023)
poultry)
Random Survival Clinical risk R, Python  Low: Established ML  Survival analysis &  Livestock Predicting survival or (Polsterl,
Forests scores library support time-to-event disease onset in herds ~ 2020)
Environmen MODIS/NEXUS Climate-disease X-ray, scikit- High: Massive satellite Satellite data + ML Livestock Predicting vector-borne (Fossen)

tal Factors links learn data processing integration , wildlife diseases via climate
VectorNet Mosquito-borne PyTorch High: Advanced GNNs for vector  Livestock Forecasting mosquito-  (Peters et al.,
modeling Geometric geometric deep population dynamics , wildlife transmitted diseases 2020)
learning
Genomic  Nextstrain Pathogen Python, ]S Moderate: Real-time Livestock Monitoring viral evolution (Hadfield et
Surveillance evolution Standardized phylogenetic analysis , wildlife in animal pathogens al, 2018)
bioinformatic pipeline
GenSLMs Viral genome  PyTorch Extreme: Large-scale Genome-scale Livestock Predicting mutationsin  (Scotch et al,
(Argonne) understanding language Models language models , wildlife animal viruses 2019)
Integrated  BlueDot Global outbreak Python Moderate: Proprietary Commercial-grade  Livestock Detecting emerging global (MacIntyre et
Platforms intelligence (NLP, ML) data integration early warning , wildlife animal threats al., 2023)
Epiverse-TRACE Open-source R, Python  Low: Designed for Open-source Livestock Tools for shared (VanderWaal

epidemic tools collaborative use

modeling suite , wildlife veterinary epidemiology et al.,, 2017)

Challenges and limitations: Since technological and
infrastructural constraints often overlap, deploying
artificial intelligence in strategic sectors is to have a
perverse set of problems, most critically for the developing
world (Czyzewska-Misztal et al., 2025). Data quality and
privacy are two of the largest challenges; the Al models
need huge quantities of high-quality heterogeneous data,
but in most resource-scarce areas, there is not enough data,
not enough documentation, and no digital infrastructure,
and this can lead to undermining model accuracy and
embedding inefficiencies (Samuel-Okon and Abejide,
2024). This is also further exacerbated by algorithmic bias
where, if not controlled, it provides biased results,
especially in areas that are sensitive in nature such as
healthcare and education, hence deepening already
entrenched social injustices (Shin, 2024). Left unable to act
across domains are interoperability and standardization
across Al systems as well. Effective interoperating and
system scalability are dependent on standardized technical
foundations and standards of regulation (Joshi, 2025). This
is a pressing issue in technologically differentiated
economies with different technological capability. Some
ethics issues are also still present, i.e., accountability and

explainability of Al-based decision-making mechanisms
(Varma, 2024). Human agency loss and transparency
challenges and concerns around algorithmic decision-
making are increasing as Al becomes more autonomous in
the provision of fundamental services, making it important
to have solid ethics that are based on human rights and
society norms (Kulaklioglu, 2024). On top of these, the
historically  entrenched skill deficiencies remain
predominant in the majority of underdeveloped countries,
where adoption of Al is drastically impeded by the lacking
Al skills with a weaker digital infrastructure (Abulibdeh et
al., 2023). An overarching strategy through investment in
digital infrastructure, capacity building initiatives, and
intersectoral coordination—Ilargely through public-private
partnerships—is needed to overcome such limitation.
Challenging as they are, limitation does provide space for
novelty and fresh policy imagination (Cupiadi and
Siswanti, 2025). The global south not only manages to
overcome the challenges of the era but also takes advantage
of the revolution-raising power of Al in tracing out
responsive and inclusive policies in building enduring
socioeconomic developments (Sundaram and
Wesselbaum, 2025).



Future perspectives: The intersection of artificial
intelligence, genetic monitoring, and bioinformatics
revolutionizes the life sciences. The intersection bridges
the theoretically from the impossible to enabling possible
predictions for promising zoonoses and facilitating secure
collaborative research globally. Al is able to leverage
genomic, environmental, and epidemiological big data to
predict epidemics, detect transmission patterns, and
facilitate rapid public health response. The protein folding
prediction has also been revolutionized by the emerging
technologies such as “AlphaFold”, which has also
enhanced understanding of disease pathways and zoonotic
potential. Scientists can enhance outbreak readiness with
improved early warning signs detection of environmental
trends and animal disease signs and evidence-based
interventions such as targeted vaccination. Federated
learning also emerged as a robust platform for
decentralized analysis of data to enable institutions to
cooperate and train Al models without compromising the
privacy of the data, which is an imperative requirement for
global genomics collaboration. The approach maximizes
predictive precision and interpretability of Al solutions for
precision medicine and public health and makes it easy to
aggregate shattered datasets. But all these advantages
would need to be achieved to the fullest if problems of data
quality, regulatory ethics, and harmonization of regulations
were well addressed in an orderly fashion. Ethical and
responsible use of Al in genomic surveillance and global
health innovation will still entirely depend on strong
mechanisms of accountability and transparency.

Policy-makers are discovering Al-facilitated decision
support systems (DSS) as frontline tools, particularly with
increasing demands for Al transparency and
accountability. The systems enhance decision-making in
the healthcare and finance industries through predictive
analytics and actionable insights. The use of Explainable
Al (XAI) in DSS systems legitimates them by clearly
delineating the reasonableness of Al-suggested policy,
which is a requirement for effective policy-making. Future
growth is predicated on increasing interdisciplinarity, i.e.,
by One Health Al platforms mapping across environment,
animal, and human health systems to address increasingly
interdependent global health issues. Shared platforms such
as these could also facilitate explainability by including
XALI techniques such as LIME and SHAP in a format that
all, including stakeholders, will be able to understand and
trust Al-delivered findings. But balance explainability and
model accuracy is also hard to achieve since even that is
tainted with ethics and computational concerns. For the
further improvement of trustworthy Al into evidence-based
policy-making, future studies must aim to create adaptive,
open, and ethical designs that allow analytical resilience at
the same time create user trust.

Conclusions: Artificial intelligence is now the strongest
mechanism for remoulding the world's response to
zoonotic disease and public health due to its unparalleled
ability to forecast, detect, and connect data in the human,
animal, and environment sectors. With support for
evidence-informed  policy = making, anticipatory
surveillance, rapid diagnosis, and One Health, Al civilizes
intersectoral inequities. Its uses, from pandemic forecasting
and gene research to vaccine and therapeutic invention,

1539

Pak Vet J, 2025, 45(4): 1532-1542.

underscore the need to augment resilience and epidemic
preparedness. Its full potential can only be achieved only,
particularly in low-resource settings, if certain root issues
relative to algorithmic bias, data privacy, and technological
inequity are addressed. Solid healthy ethical standards,
open government, and fair access must provide a
framework to ensure health security-enhancing without
amplifying disparities that already exist. Hence, to what
extent Al is integrated into global healthcare systems in
terms of responsibility, partnership, and solidarity will
characterize to what extent it will contribute to the defense
of humans against zoonotic and public health threats in the
days to come.
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