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 The world poultry sector is facing some dire problems in balancing the production 
efficiency against food safety, especially as regulatory pressures are mounting and 
usage of antibiotic growth promoters is being restricted. This review provides a 
synthesis of the current findings on the application of beneficial microbes and natural 
antimicrobials as viable options to control pathogens throughout the farm-to-fork 
continuum. Probiotics, particularly Lactobacillus and Bacillus species, along with 
combinations like synbiotics and bacteriophages, have shown significant efficacy by 
competitive exclusion, host immunity regulation and antimicrobial compound 
synthesis leading to 1.5-4.5 log reductions of major pathogens including but not 
limited to Salmonella, Campylobacter and pathogenic Escherichia coli. The 
combined probiotic-prebiotic, essential oil, organic acid and bacteriophage 
formulations offer multifactorial intervention models that address each step of 
production, such as hatchery procedures to post-harvest interventions. Despite the 
current challenges of standardization, regulatory regulation, and cost-efficiency, the 
unified use of these natural options is a viable way to continue the production 
efficiency and at the same time reduce the risk of global antimicrobial resistance and 
guarantee the microbiological safety of poultry products to consumers on a global 
scale. 
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INTRODUCTION 

 
Poultry meat is the largest form of animal protein in 

the world, and the world produces more than 130 million 
metric tons per year, which is expected to rise to 150 
million metric tons by the year 2030 (van der Laan et al., 
2024). However, such massive growth has been coupled 
with increased food safety issues, with large-scale 
production systems that create environments that support 
the growth of pathogens throughout the farm-to-fork 
continuum (Elbehiry & Marzouk, 2025). Contaminated 
poultry products contribute substantially to foodborne 
illness, leading to significant medical costs, productivity 
losses, and public health burdens, and are responsible for 
20–30% of all foodborne disease outbreaks worldwide 
(Ashpalia et al., 2024). The poultry production system is a 
reservoir of numerous zoonotic pathogens of great public 
health concern. Salmonella species, especially S. 
Enteritidis and S. Typhimurium, remain the major causative 
agents with a prevalence rate ranging between 5-40% in 
commercial flocks (Mkangara, 2023). These pathogens are 

highly adaptable and carry various virulence factors, such 
as the invasion of intestinal epithelial cells, as well as the 
development of biofilms on the processing equipment 
(Jahan et al., 2022). The most common bacterial etiology 
of gastroenteritis across all countries in the world is 
represented by Campylobacter species, most commonly C. 
jejuni and C. coli, and poultry is the primary reservoir of 
the bacteria that facilitates human infection (Amjad, 2023). 
The rates of colonization of broiler flocks are often more 
than 80% at slaughter with a bacterial load of 107-109 
colony-forming units/ gram cecal content. The small 
infective dose (500-800 bacterial cells) of Campylobacter 
is unique in the application of control measures 
(Abdulazeez, 2022). Enteropathogenic EPEC, 
enterohemorrhagic EHEC, and avian pathogenic E. coli 
(APEC) strains have a wide repertoire of virulence 
determinants that are involved in disease in birds and 
humans (Hu et al., 2022). E. coli genomic plasticity and its 
ability to exchange genes horizontally make it extremely 
difficult to control and help to generate multidrug-resistant 
strains (Saini et al., 2024). This long history of using sub-
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therapeutic levels of antibiotics as growth-promoters has 
been a significant contributor to the worldwide epidemic of 
antibiotic resistance. The extensive use of antibiotics has 
been going on since the 1950s to improve feed and growth 
rates in animals by putting them into feed at sub-inhibitory 
levels (Goes, 2024). This has placed a lot of selective 
pressure on gut microbiota, leading to the development of 
antibiotic-resistant microorganisms and subsequent 
expansion of resistance genes. Antimicrobial resistance 
(AMR) has been ranked among the ten leading global 
health issues of significance by the World Health 
Organization and it is estimated that an estimated 700,000 
people die each year with antibiotic-resistant infections, a 
figure that is set to rise to 10 million by 2050 (Fatima et al., 
2023). Rates of resistance to critically important 
antimicrobials in poultry systems have become 
increasingly alarming, with multi-drug-resistant 
Salmonella and Campylobacter isolates reported at 
prevenance exceeding 60% in some surveillance studies 
(Khatun, 2025). The transfer of AMR determinants from 
poultry-associated microbes to human pathogens via 
mobile genetic elements obtained horizontally through 
horizontal gene transfer represents a significant public 
health concern (Vinayamohan et al., 2022).  

The regulatory response to the use of antibiotic growth 
promoters has been built up over time in different 
jurisdictions. The European Union, South Korea, and the 
United States had banned them in 2006 and 2011, 
respectively, and in the Veterinary Feed Directive of 2017 
(Torok et al., 2022). This type of legislative intervention 
has compelled the drastic transformations in the livestock 
production system, which places an immediate need for 
viable solutions to attain the same level of production 
efficiencies and at the same time retain high standards of 
food safety. The use of antibiotic growth promoters has had 
mixed impacts on the important measures of production; 
empirical research often records a decrease in weight gains 
up to 3-5% as well as increases in feed conversion ratios up 
to 2-4% (Canibe et al., 2022). However, reduced use of 
antibiotics has also been associated with increased 
susceptibility to enteric diseases under some conditions of 
operation, thus underlining the urgent need for sound 
replacement measures. This review aims to synthesize 
current evidence on the application of beneficial microbes 
and natural antimicrobials across the poultry production 
chain, discussing their mechanisms, efficacy, implementa-
tion strategies, and impact on food safety and public health. 

 
Beneficial Microbes in Poultry Production 
Probiotics: Probiotics are live microorganisms that confer 
health benefits to the host when administered in adequate 
amounts and are now regarded as effective alternatives to 
antibiotic growth promoters in poultry (Krysiak et al., 
2021). Food safety in poultry production begins with 
controlling intestinal colonization by zoonotic pathogens 
that can be transferred to meat and eggs during processing. 
Beneficial microbes are effective in reducing the load of 
Salmonella, Campylobacter, E. coli, and Listeria 
monocytogenes in both experimental and field studies. 
Lactic acid bacteria are the most widely studied and used 
probiotics in poultry. Species such as Lactobacillus 
acidophilus, Lactiplantibacillus plantarum, 
Limosilactobacillus reuteri, Ligilactobacillus salivarius, 

Lacticaseibacillus casei, and Lacticaseibacillus rhamnosus 
improve growth, immunity, and gut health as shown in 
Table 1 (Fathima et al., 2022). These species tolerate 
gastric acidity (pH 3.0 for up to four hours) and bile salt 
concentrations of 0.3–1.0% (Thuy & Trai, 2024). They 
enhance nutrient digestibility by increasing intestinal 
amylase activity (Leal, 2022), regulate mucosal immunity 
through cytokine expression (Tian et al., 2021), and 
produce bacteriocins effective against Salmonella, 
Campylobacter, and Clostridium perfringens (Mokoena et 
al., 2021). Bifidobacterium spp. (B. bifidum, B. longum, 
and B. animalis) also contribute to gut health by fermenting 
oligosaccharides into short-chain fatty acids, lowering 
intestinal pH, and enhancing immunoglobulin levels 
(Asadpoor et al., 2021; Rousseaux et al., 2023). Multi-
strain formulations combining Lactobacillus, 
Bifidobacterium, Enterococcus, and Pediococcus show 
greater efficacy than single-strain products (McFarland, 
2021). Spore-forming Bacillus spp. (B. subtilis, B. 
amyloliquefaciens, B. licheniformis, B. coagulans, B. 
clausii) are notable for their resilience and stability during 
feed processing (Elleithy et al., 2023; Pawar et al., 2025). 
They produce lipopeptides, bacteriocins, and enzymes 
(proteases, lipases, cellulases, xylanases, phytases) that 
inhibit pathogens, degrade anti-nutritional factors, and 
enhance nutrient bioavailability (Luise et al., 2022; Xu et 
al., 2025). Dietary supplementation with B. subtilis (10⁵ 
CFU/g feed) has been shown to improve body weight gain, 
feed conversion, and survival in broilers (Mohamed et al., 
2022). 
 
Prebiotics: Prebiotics are non-digestible food components 
that selectively enhance the growth and action of 
commensal microorganisms in the gastrointestinal tract, 
and offer health benefits to the host organism (Ballini et al., 
2023). Oligosaccharides are the most researched type of 
prebiotics in the sphere of poultry nutrition. Mannan-
oligosaccharides (MOS) extracted cell wall of the 
Saccharomyces cerevisiae have been proven to be effective 
in increasing production parameters and immune 
competency (Baek et al., 2024). Broiler diets supplemented 
with MOS at a dietary level of 0.1-0.5 percent have a 
significant effect on body weight gain, feed conversion 
ratio, and lower mortality rates compared to control diets 
that were not supplemented (Baker et al., 2021). Fructo-
oligosaccharides (FOS) and inulin specifically stimulate 
the growth of species of the genus Bifidobacterium and 
Lactobacillus in the cecum, resulting in the rise of short-
chain fatty acids, including butyrate, propionate, and 
acetate, as shown in Table 1. Galacto-oligosaccharides 
(GOS) and xylo-oligosaccharides (XOS) are potential 
prebiotics that are effective, but their effectiveness depends 
on the degree of polymerization and dosage level (Morgan, 
2023). In the lower gastrointestinal tract, inulin, a 
polydisperse carbohydrate made up of fructose units 
connected by β (2→1) bonds, acts as a substrate for the 
fermentation of beneficial bacteria (Popoola-Akinola et al., 
2022). Adding inulin to the diets of poultry at 0.5-2.0 
percent has been shown to regulate the composition of 
cecal microbiota, expand populations of beneficial 
bacteria, and boost the generation of metabolites that have 
anti-inflammatory and barrier-protective properties 
(Fotschki et al., 2023). Another class of prebiotics with 
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immunomodulatory qualities is β-glucans, which are 
obtained from yeast cell walls, fungi, and cereal grains. 
These substances activate innate immune responses and 
improve resistance to infectious diseases by interacting 
with immune cell receptors, especially Dectin-1 (Singh & 
Bhardwaj, 2023). The complete mechanism is shown in 
Fig. 1. 
 
Synbiotics: Synbiotics are clever blends of prebiotics and 
probiotics that are intended to improve the activity, 
colonization, and survival of good bacteria in the 
gastrointestinal system (Yue et al., 2025). The synergistic 
effect between probiotic strains and their preferentially 
used prebiotic substrates ideally provides better benefits 
than the use of either component individually. The in vitro 
screening research indicates a high degree of variability in 
use of prebiotics amongst different strains of probiotics. A 
combination of Enterococcus faecium with galacto-
oligosaccharides shows better growth rates as compared to 
mannan-oligosaccharides, oligofructose or xylo-
oligosaccharides (Jaswal, 2025). The combination of 
Ligilactobacillus salivarius with GOS and combined with 
raffinose-family oligosaccharides and Lactiplantibacillus 
plantarum is an optimized symbiotic (Sasi et al., 2025). 
Field experiments of synbiotic supplementation in broiler 
chickens indicate that there is a consistent increase in 
productive performance. MOS (0.5) + probiotic mixture 
(0.1) showed significant body weight gain at the starter, 
grower, and finisher stages with gain of 3-7 percent 
compared to controls (Charandas, 2024).  Feed conversion 

ratios are increased by 25-5%, which is very economical. 
Synbiotic supplementation leads to improvement of 
immune parameters such as high antibody titers to 
Newcastle disease and infectious bursal disease viruses, 
high serum levels of immunoglobulin, and improved 
intestinal morphology (Hossain et al., 2025). Synbiotics 
have protective effects, which also include stress 
mitigation. Chronic heat-stressed broilers (35±2°C for 8 
h/day) supplemented with synbiotic combinations have 
lower serum corticosterone levels and better intestinal 
microarchitecture and retain growth performance in 
contrast with heat stressed, unsupplemented controls (Du et 
al., 2023). 
 
Mechanism of Action 
Competitive Exclusion and Colonization Resistance: 
Competitive exclusion is one of the core ecological 
processes where commensal microorganisms prevent the 
establishment of pathogens through direct competition to 
access limiting nutrients, adhesion sites, and ecological 
niches in the gastrointestinal tract (Horrocks et al., 2023). 
Nutrient competition is a major competitive exclusion 
strategy whereby useful microbes obtain the necessary 
substrates needed in pathogen growth and metabolic 
processes, represented in Fig. 2 (Wang & Kuzyakov, 
2024). Competition over carbohydrates has been well-
studied; commensal microbes are quick to absorb available 
monosaccharides, oligosaccharides, and polysaccharides 
through a wide variety of glycolytic pathways and thus 
restrict  substrate  availability to pathogenic  microbes  such

 

 
 
Fig. 1: Mechanisms of prebiotic action in the poultry gut: MOS, FOS, and inulin enhance gut health by stimulating SCFA production, modulating immune 
responses, improving intestinal morphology, and increasing mineral absorption. 
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Table 1: Useful microorganisms that exhibited efficacy on pathogens in the poultry production systems 
Category Agent/Strain Target Pathogen(s) Primary Mechanism Application 

Method 
Efficacy (Log 
Reduction) 

References 

Lactobacillus 
 

Lactobacillus 
acidophilus 

S. Typhimurium, E. coli 
O157:H7 

Competitive exclusion, 
lactic acid production, 
bacteriocin 

Feed 
supplement 
(10⁸ CFU/g 
feed) 

2.1-2.8 (Shapwa, 2022) 

Lactiplantibacillus 
plantarum 

Salmonella spp., C. 
perfringens 

Plantaricin production, 
competitive exclusion, 
biofilm inhibition 

Feed/Water 
additive (10⁹ 
CFU/mL) 

2.5-3.2 (Chuwatthanak
hajorn, 2025) 

Limosilactobacillus 
reuteri 

Salmonella enteritidis, 
C. perfringens 

Reuterin production, 
immune modulation, gut 
barrier enhancement 

Feed 
supplement 
(10⁸ CFU/g) 

1.9-2.6 (Shi et al., 
2022) 

Ligilactobacillus 
salivarius 

Campylobacter spp., 
E. coli 

Bacteriocin (Salivaricin), 
adhesion competition 

Water 
treatment 
(10⁸ CFU/mL) 

1.8-2.4 (Chiba et al., 
2024) 

L. fermentum Salmonella spp., E. coli H₂O₂ production, lactic 
acid, immune stimulation 

Feed additive 
(10⁸ CFU/g) 

1.7-2.3 (Guo et al., 
2021) 

Bacillus 
 

B. subtilis C. perfringens, E. coli, 
Salmonella 

Surfactin, fengycin 
production, spore stability 

Spore form in 
feed (10⁸-10⁹ 
CFU/g) 

2.3-3.1 (Cheng et al., 
2018) 

B. licheniformis Salmonella spp., E. coli Lichenicidin production, 
competitive exclusion 

Feed 
supplement 
(10⁸ CFU/g) 

1.8-2.4 (Shleeva et al., 
2023) 

B. coagulans S.Typhimurium,  
C. perfringens 

Lactic acid, coagulin 
production, spore 
resilience 

Feed additive 
(10⁸ CFU/g) 

2.0-2.7 (Guo et al., 
2021) 

B. amyloliquefaciens Salmonella spp., E. 
coli, molds 

Bacillomycin, macrolactin 
synthesis 

Feed 
supplement 
(10⁸ CFU/g) 

2.1-2.8 (Ngalimat et 
al., 2021) 

Bifidobacteriu
m 

B. animalis subsp. lactis E. coli, S. enteritidis Acetic acid production, 
immune modulation, 
barrier function 

Feed 
supplement 
(10⁸ CFU/g) 

1.6-2.2 (Cheng et al., 
2021) 

Enterococcus E. faecium Salmonella spp., C. 
perfringens 

Enterocin production, 
colonization resistance 

Feed additive 
(10⁸ CFU/g) 

1.9-2.5 (Vela & 
Logrono, 
2023) 

Pediococcus P. acidilactici Salmonella spp., 
Listeria monocytogenes 

Pediocin production, lactic 
acid 

Feed 
supplement 
(10⁸ CFU/g) 

2.0-2.6 (Khorshidian et 
al., 2021) 

Next-Gen 
Probiotic 
 

Akkermansia 
muciniphila 

C. perfringens, 
Salmonella 

Mucin layer enhancement, 
Amuc_1100 protein, 
barrier integrity 

Water 
additive 
(research 
phase) 

1.8-2.4 (Mo et al., 
2024) 

Faecalibacterium 
prausnitzii 

E. coli, inflammatory 
pathogens 

Butyrate production, anti-
inflammatory 

Feed 
supplement 
(experimental
) 

1.5-2.1 (Ali et al., 
2022) 
 

Bacteriocin-
Producing 
Probiotic 

Lactococcus lactis 
subsp. lactis (nisin 
producer) 

C. perfringens, Listeria, 
Gram-positive 
pathogens 

In situ nisin production, 
competitive exclusion, 
lactic acid 

Feed 
supplement 
(10⁸ CFU/g) 

2.2-3.0 (Hassan et al., 
2021) 

Yeast S. cerevisiae 
(active/inactive) 

Salmonella spp., E. 
coli, mycotoxins 

Pathogen binding (cell 
wall), immune stimulation, 
mycotoxin adsorption 

Feed additive 
(0.1-0.2%) 

1.4-2.0 (Davis, 2022) 

Multi-Strain 
Consortium 

6-strain probiotic mix 
(Lactobacillus + Bacillus 
+ Bifidobacterium) 

Multi-pathogen 
(Salmonella, E. coli, 
Campylobacter) 

Synergistic mechanisms, 
metabolic cooperation 

Feed/in-ovo 
(10⁹ CFU/g or 
egg) 

3.5-4.1 (Afsharnia et 
al., 2025) 

Prebiotic 
 

Fructooligosaccharide
s (FOS) 

Indirect (supports 
beneficial microbes) 

Selective fermentation, 
SCFA production, 
bifidogenic 

Feed inclusion 
(0.2-0.5%) 

Supportive 
(enhances 
probiotics) 

(Hotchkiss et 
al., 2022) 

Mannan-
oligosaccharides 
(MOS) 

Salmonella spp., E. coli Pathogen agglutination 
(Type-1 fimbriae binding), 
immune modulation 

Feed additive 
(0.1-0.2%) 

1.2-1.8 (Davis, 2022) 

Inulin Indirect (bifidogenic 
effect) 

SCFA production, 
beneficial bacteria 
proliferation 

Feed inclusion 
(0.3-0.5%) 

Supportive (Klostermann, 
2023) 

Postbiotic Lactobacillus cell-free 
supernatant (CFS) 

Salmonella spp., E. 
coli, Campylobacter 

Antimicrobial metabolites 
(organic acids, 
bacteriocins, peptides), no 
live cells 

Water 
additive or 
feed spray (5-
10% v/v) 

1.8-2.6 (Ozturk & 
Sengun, 2025) 

 
as Salmonella and E. coli (Muramatsu & Winter, 2024). 
The iron sequestration by siderophore synthesis by the 
commensals creates an environment lacking iron, which 
hinders the colonization of the pathogens as the pathogenic 
bacteria need iron to carry out vital metabolic activities, 
including DNA replication and the electron transport chain 

(Marchetti et al., 2020). Adhesion site competition entails 
physical occupation of intestinal epithelial binding sites by 
useful microorganisms, thus preventing the pathogenic 
attachment and eventual colonization (Lin et al., 2024). 
Surface layer proteins (S-layer proteins) and 
exopolysaccharides produced by Lactobacillus species 
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contribute to strong adhesion to mucin glycoproteins and 
intestinal epithelial cells through lectin-carbohydrate 
binding and hydrophobic forces (Muscariello et al., 2020). 
These competitive exclusion strategies together form a first 
line of defense, which averts pathogenic colonization in 
poultry, and hence minimizes the chances of contamination 
along the food chain. 
 
Production of Antimicrobial Compounds: Bacteriocins 
are ribosomally synthesized antimicrobial peptides that are 
produced mainly by lactic acid bacteria, and they are active 
against closely related bacterial species (Darbandi et al., 
2022). Class I bacteriocins (lantibiotics), such as nisin, 
subtilin, or mersacidin, also have post-translationally 
modified amino acids, including lanthionine and methyl-
anthionine, which provide structural stability and 
antimicrobial activity based on forming membrane pore 
and bind lipid II (Antoshina et al., 2022). Nisin attaches to 
lipid II, a peptidoglycan precursor molecule, which results 
in complexes of pore that cause depolarization of the 
membrane, leakage of ions, and cell death of vulnerable 
bacteria (Sharma et al., 2021). Class II bacteriocins, such 
as pediocin PA-1, leucocin A and sakacin P, are non-
modified heat-resistant peptides that identify mannose 
phosphotransferase systems and cause membrane 
permeabilisation by pore formation mechanisms (Goswami 
et al., 2021). Production of organic acids is a widespread 
antimicrobial response by the beneficial microorganisms, 
especially lactic acid bacteria, that prevent growth of 
pathogenic microorganisms and shown in Fig. 2. The 

antimicrobial activity of acetic acid produced by species of 
the genera Bifidobacterium and some strains of 
Lactobacillus is better than that of lactic acid because of a 
higher degree of membrane permeability and a larger 
degree of intracellular acidification effect (Cizeikiene & 
Jagelaviciute, 2021). The cyclic lipopeptide biosurfactant, 
Surfactin produced by the Gram-positive bacterium, B. 
subtilis, exhibits a high level of activity against Gram-
positive and Gram-negative bacteria by solubilizing the 
membrane and forming pores on the bacteria (Chen et al., 
2022). The variety of antimicrobial repertoire generated by 
useful microbes offers direct and potent method of 
managing foodborne pathogens in the avian GIT, which 
makes poultry products safer. 
 
Immune System Modulation: The pattern recognition 
receptor (PRR) signaling is the major pathway by which 
the commensals interact with the host immune system. 
Toll-like receptors (TLRs) specifically TLR2, TLR4, 
TLR5 and TLR9, detect microbial-associated molecular 
patterns (MAMPs) such as lipoteichoic acid, 
lipopolysaccharide, flagellin, and unmethylated CpG DNA 
patterns (Al-Abdulwahid, 2021). TLR activation by 
probiotics activates intracellular signaling pathways that 
include MyD88, TRIF, and downstream protein kinases to 
ultimately activate NF- 0 B and AP-1 transcription factors 
and induce expression of pro-inflammatory cytokines 
(Surai et al., 2021). Cytokine modulation is an essential 
process in which commensals can influence the 
development  of  an  immune response against resistance to

 

 
 
Fig. 2: Multifactorial mechanisms of beneficial microorganisms in poultry for pathogen control and enhanced food safety. 
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pathogens and resistance to immunopathology. The 
administration of probiotics affects the ratio between the 
pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12, 
TNF-α, IFN-γ) and the anti-inflammatory cytokines (IL-
10, TGF-β), in general favoring the phenomenon of 
controlled pro-inflammatory reaction which strengthens 
the ability of the organism to eliminate pathogens (Bilal 
et al., 2022). The production of secretory IgA in the 
intestinal mucosa is also enhanced by the stimulation of 
B cells and plasma cells in the intestinal mucosa through 
the action of probiotics and TLR-dependent or cytokine-
mediated pathways (Walrath et al., 2021). Through 
regulation of homeostatic immune reactions, commensal 
microbial communities contribute to the overall ability of 
the host to withstand pathogenic infections and reduce 
tissue destruction due to inflammation, and in the end, 
promote the health and food safety goals of animals. 
 
Biofilm Disruption Mechanisms: The first protective step 
in preventing biofilm formation is the inhibition of the initial 
adhesion. Biosurfactants produced by the species of Bacillus 
and lactobacilli lower the surface tension and the 
hydrophobicity of the substrates and provide adverse 
environments where the pathogen cannot adhere, as shown 
in Fig. 2 (Patel et al., 2021). The degradation of the 
extracellular polymeric substance interferes with the 
structure of the formed biofilms. The microorganisms that 
are beneficial release various enzymes that degrade the 
components of the matrix, such as polysaccharides, proteins 
and extracellular DNA (Kim et al., 2023). Glycosidic bonds 
of biofilm exopolysaccharides are broken by the action of 
polysaccharide-degrading enzymes including α-amylase, β-
glucanase, and alginate lyase, which weaken the 
cohesiveness and stability of the matrix (Anso et al., 2024). 
Food safety relies, in part, on the ability to prevent and 
disrupt microbial biofilms, as biofilm-associated bacteria 
exhibit increased resistance to antimicrobials and 
environmental stresses, and act as persistent sources of 
contamination in poultry production systems. 
 
Quorum-Sensing Interference: Quorum sensing (QS) is 
a bacterial cell-to-cell communication system that regulates 
the expression of genes that depend on population density, 
which includes the regulation of virulence factors, biofilm 
formation, and cooperation in metabolism. Pathogen QS 
interference by natural antimicrobials and commensal 
microorganisms is also an original anti-virulence approach 
that does not eliminate bacterial populations, but rather 
reduces the selection pressures on resistance evolution 
(Nag et al., 2021). QS systems based on acyl-homoserine 
lactone (AHL) are more commonly found in Gram-
negative pathogens, including Salmonella, Campylobacter, 
and pathogenic strains of E. coli (Koley et al., 2023). 
Mechanisms of quorum-quenching, which disrupt AHL 
signaling, are enzyme breakage of signal molecules and 
signal-receptor interactions. The hydrolysis or 
modification of AHL molecules catalyzed by AHL-
lactonases, AHL-acylases, and oxidoreductases expressed 
by Bacillus species and some lactic acid bacteria make 
them unable to activate receptors as illustrated in Fig. 2 
(Raya et al., 2022). This strategy represents a novel 
antivirulence approach that attenuates pathogenicity 
without exerting bactericidal pressure, thereby offering a 

sustainable method for pathogen control that minimizes 
selective pressure for AMR in food production systems. 
 
Gut Barrier Integrity Enhancement: The intestinal 
barrier is a combination of various elements, which include 
the layer of mucus, the monolayer of the epithelial cells 
with tight junctions between cells, and the immune cell 
populations present underneath (Duangnumsawang et al., 
2021). Stabilization of tight junction proteins and 
upregulation is one of the major mechanisms of barrier 
improvement. Paracellular permeability is regulated by 
tight junction complexes, which are assemblies of 
transmembrane proteins including claudins, occludin, and 
junctional adhesion molecules, and cytoplasmic scaffold 
proteins including the zonula occludens isoforms, ZO-1, 
ZO-2, and ZO-3 (Horowitz et al., 2023). Probiotics 
increase the expression of barrier-forming claudins 
(claudin-1, claudin-3, and claudin-4) and also suppress 
pore-forming claudins (claudin-2), which enhance 
epithelial permeability as in Fig. 2. Enhancement of the 
mucus layer gives a physical and biochemical barrier to 
avoid direct contact with pathogens and the epithelial 
surfaces. Probiotic bacteria increase the proliferation and 
expression of the mucin gene (MUC2, MUC3, MUC4) via 
the activation of transcription factors, such as SPDEF, 
GFI1, and KLF4 (Duangnumsawang, 2023). Butyrate is a 
microbial metabolite that prevents histone deacetylase 
(HDAC) thereby promoting the increase in the MUC2 gene 
transcription (Yang et al., 2021). The intestinal epithelial 
cells also help the host defense system by the production of 
antimicrobial peptides, which create another form of 
defense barrier against pathogen colonization. Avian 2-
defensin (AvBD), cathelicidin, and RegIII proteins are the 
products synthesized by epithelial cells in response to 
microbial challenges and collectively form a chemical 
barrier that can neutralize invading pathogens (Awad et al., 
2017). Enhancement of intestinal barrier function is 
fundamental to preventing pathogen translocation from the 
small and large intestines into the systemic circulation and 
poultry tissues, thereby directly reducing microbiological 
contamination of carcasses and poultry products reaching 
the end consumer. 
 
Natural Antimicrobials in Poultry: Plant-based 
antimicrobials are a heterogeneous group of bioactive 
molecules that have been demonstrated to warrant 
significant potential as an alternative in the form of 
substituting traditional antibiotics in poultry production 
(Acharya & Barsila, 2025). Plants are rich sources of a 
plethora of bioactive components with antimicrobial 
properties against bacteria, yeasts, and molds. 
Antimicrobial peptides are a heterogeneous category of 
extremely conserved molecules that form part and parcel of 
innate immune defense mechanisms in all life. These 
peptides are usually 12-50 amino acids long, have a net 
positive charge at physiological pH and have amphipathic 
structures that allow them to interact with negatively 
charged bacterial membranes (Wang, 2023). Antimicrobial 
peptides are reported to kill bacteria more quickly (have 
bactericidal kinetics), have a broad-spectrum effect, and are 
unlikely to cause resistance (have a low resistance 
development) because of their membrane-directed action 
(Simonson et al., 2021). The use of organic acids and their 
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salts as preservatives in livestock and poultry production as 
antimicrobial additives dates back several decades. Short-
chain organic acids (C1-C7) are antimicrobial agents with 
several effects on gastrointestinal physiology, including the 
reduction of pH, direct antimicrobial action, energy supply, 
and intestinal architecture (Ebeid & Al-Homidan, 2022). 
Bacteriophages, viruses that infect and lyse bacterial cells 
specifically, are very specific biological antimicrobials, 

and they promise significant potential in eliminating 
foodborne pathogens in poultry production. Their great 
host specificity allows them to selectively eliminate 
pathogenic bacteria but protection of commensal 
microbiota, avoiding one of the main disadvantages of non-
selective antimicrobial agents (Rebenaque & Orenga, 
2022). Table 2 shows all these processes in detail with 
practical examples. 

 
Table 2: Natural antimicrobial agents that exhibited efficacy on pathogens in the poultry production systems 
Category Agent/Strain Target Pathogen(s) Primary Mechanism Application Method Efficacy (Log 

Reduction) 
References 

Essential Oil 
 

Carvacrol (Oregano 
oil) 

Salmonella spp., C. 
perfringens, E. coli, C. 
perfringens 

Membrane disruption, 
efflux pump inhibition, QS 
interference 

Feed supplement 
(100-200ppm) 

2.2-3.0 (Al-Mnaser, 
2019) 

Thymol (Thyme oil) Salmonella enteritidis, 
C. perfringens, E. coli 

Membrane 
permeabilization, ATPase 
inhibition, oxidative stress 

Feed additive (100-
150ppm) 

2.0-2.7 (CHAURASIA, 
2024) 

Cinnamaldehyde 
(Cinnamon oil) 

E. coli, S. typhimurium, 
Campylobacter 

Membrane integrity 
disruption, cell wall 
synthesis inhibition 

Feed inclusion (75-
150ppm) 

1.8-2.5 (CHAURASIA, 
2024) 

Eugenol (Clove oil) Salmonella spp., E. 
coli, S. aureus 

Membrane permeabiliza-
tion, protein denaturation, 
enzyme inhibition 

Feed additive (50-
100ppm) 

1.6-2.3 (Alagawany et 
al., 2022) 

Limonene (Citrus 
oil) 

Salmonella spp., 
Campylobacter 

Membrane fluidity 
alteration, respiratory 
chain disruption 

Feed supplement 
(80-120ppm) 

1.5-2.1 (Sinche 
Ambrosio, 2022) 

Plant Extract 
 

Garlic extract 
(Allicin, organosulfuic 
compounds) 

C. perfringens, 
Salmonella spp., E. coli 

Sulfhydryl group 
interaction, QS inhibition, 
membrane damage 

Feed/Water (0.5-
1.0%) 

1.9-2.6 (AbdAl-Rudha & 
AL-Nasiry, 
2023) 

Green tea 
polyphenols (EGCG, 
catechins) 

E. coli, Salmonella 
spp., C. perfringens 

Antioxidant activity, 
membrane disruption, 
protein binding 

Feed additive (200-
400ppm) 

1.7-2.4 (Zhang et al., 
2021) 

Turmeric extract 
(Curcumin) 

C. perfringens, 
Salmonella spp., E. coli 

Anti-inflammatory, 
membrane disruption, 
FtsZ inhibition 

Feed supplement 
(100-300ppm) 

1.5-2.2 (Orimaye et al., 
2024) 

Grape seed extract 
(Proanthocyanidins) 

S. enteritidis, E. coli Antioxidant, membrane 
damage, enzyme 
inhibition 

Feed additive (150-
300ppm) 

1.6-2.3 (Kovács, 2022) 

Organic Acid 
 

Butyric acid 
(sodium/calcium 
butyrate) 

Salmonella spp., E. 
coli, C. perfringens 

pH reduction, gut barrier 
enhancement, histone 
deacetylase inhibition 

Feed/Water (0.1-
0.3%) 

1.8-2.5 (Melaku et al., 
2021) 

Propionic acid Salmonella 
Typhimurium, molds, 
E. coli 

pH reduction, metabolic 
disruption, feed 
preservation 

Feed preservation 
(0.2-0.5%) 

1.6-2.3 (Ben Braïek, O., 
& Smaoui, 2021) 

Lactic acid Multi-pathogen 
(Salmonella, 
Campylobacte, E. coli) 

pH reduction, membrane 
disruption, acidification 

Carcass wash/spray 
(2-3% solution) 

2.0-2.8 (Wong, 2023) 

Formic acid Salmonella spp., E. coli Undissociated acid 
penetration, intracellular 
pH disruption 

Feed acidification 
(0.5-1.0%) 

1.7-2.4 (Taylor & 
Doores, 2020) 

Antimicrobial 
Peptide 
 

Nisin (from L. lactis) C. perfringens, Listeria 
monocytogene, 
Staphylococcus 

Pore formation (Lipid II 
binding), membrane 
permeabilization 

Feed additive (25-
50ppm) 

2.1-2.9 (Anumudu et al., 
2021) 

Pediocin PA-1 Listeria monocytogene, 
E. coli 

Membrane 
permeabilization, pore 
formation 

Processing 
application/feed 

1.9-2.6 (Khorshidian et 
al., 2021) 

Medium-Chain Fatty 
Acids 

Lauric acid (C12:0) 
and Monolaurin 

S. typhimurium, E. coli, 
C. perfringens, 
enveloped viruses 

Membrane disruption, viral 
envelope solubilization, 
biofilm inhibition 

Feed additive (0.2-
0.5%) 

2.0-2.8 (Çenesiz & 
Çiftci, 2020) 

Antimicrobial 
Enzyme 

Lysozyme (hen egg-
white derived or 
recombinant) 

Gram-positive 
bacteria (C. perfringens, 
Staphylococcu, Listeria) 

Peptidoglycan hydrolysis 
(β-1,4-glycosidic bonds), 
cell wall lysis 

Feed additive or 
processing spray 
(50-200ppm) 

1.5-2.3 (mainly 
Gram-
positive) 

(Nawaz et al., 
2022) 

Herbal 
Immunomodulator 

Echinacea purpurea 
extract 
(polysaccharides, 
alkylamides) 

Indirect pathogen 
control via immune 
enhancement 

Immune stimulation 
(macrophage activation, 
cytokine modulation), 
phagocytosis 
enhancement 

Feed supplement 
(0.1-0.5%) 

1.2-1.9 
(immune-
mediated 
reduction) 

(Magnavacca et 
al., 2022) 

Bacteriophage 
 

Anti-Salmonella 
phage cocktail 
(multiple phages) 

S. enteritidis, S. 
Typhimurium 
(serovar-specific) 

Bacterial lysis, biofilm 
disruption, host-specific 
infection 

Spray/feed (10⁷-10⁹ 
PFU/mL or g) 

3.2-4.5 (Shaji et al., 
2021) 

Anti-Campylobacter 
phage cocktail 

C. perfringens, C. coli Targeted bacterial lysis, 
reducing colonization 

Pre-
harvest/processing 
spray (10⁸-10⁹ 
PFU/mL) 

2.8-3.8 (Abd El-Hack et 
al., 2021) 
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Application Strategies Across the Poultry Production 
Chain 
Hatchery Interventions (In Ovo and Early 
Colonization): The hatchery-based interventions are 
important control areas in the development of the beneficial 
microbial communities and prevention of pathogen 
colonization at the susceptible early stages of poultry 
development (Oliveira et al., 2024). Embryonic and 
immediate post-hatch phases offer opportunities of 
manipulating the microbiome because the gastrointestinal 
tracts are initially sterile and are colonized by 
environmental microorganisms within a short time after 
hatching (Shehata et al., 2021). Probiotics and prebiotics in 
ovo administration are beneficial agents that are directly 
injected into hatching embryos, usually at 17-18 days of 
incubation through the air cell, amnion, or the yolk sac (Fig. 
3) (Das et al., 2021). The amnion is the most preferred site 
for injecting probiotics because embryos instinctively 
consume amniotic fluid that contains the inserted 
microorganisms as they are pipped, which facilitates 
gastrointestinal colonization (Castañeda Bustillo, 2020). 
When prebiotic oligosaccharides such as galacto-, fructo-, 
and inulin-type fructans, are administered in ovo, they 
stimulate the proliferation of indigenous beneficial bacteria 

and improve intestinal morphological parameters, 
including villus height, crypt depth, and absorptive surface 
area (Reube et al., 2021). Interventions of post-hatch 
colonization target the timely absence of resident 
microbiota in the first 24h compared to 72h of life in order 
to develop advantageous microbial consortia with the 
ability to provide colonization resistance (Shehata et al., 
2021). The form of the application regimes is usually 107-
109 CFU/bird, which is sprayed by automated spray 
cabinets built in commercial chicken-processing lines 
(Kang, 2020).  
 
Feed Supplementation Strategies: Introduction of useful 
microorganisms and natural antimicrobials through the 
feed matrix is the most viable and scalable approach to 
commercial poultry farms and enables prolonged exposure 
throughout the poultry rearing period (Mak et al., 2022). 
Another approach to preserve the heat-sensitive probiotics 
during the pelletizing step is the use of microencapsulation 
technology that does not depend only on the sporogenic 
species. Alginate, chitosan, or lipid compounds are used to 
form encapsulation matrices that protect Lactobacillus and 
Bifidobacterium strains against thermal stress to achieve 
the  survival  rates of  80-90% at  pelleting  temperatures of

 

 
 
Fig. 3: Integrated multi-hurdle approach for pathogen reduction across the poultry production chain, from hatchery to processing. Cumulative log 
reductions in pathogens (e.g., Salmonella, Campylobacter) are depicted at each stage. 
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85-90°C and less than 10% for unprotected cells. The 
technology expands the range of potential probiotics in the 
use of pellet feeds, where specific targets can be delivered 
and released into a specific section of the intestines. The 
common range of probiotics added to feed is 106 to 109 
CFU/kg of final feed, with the specific dosage varying 
depending on animal species, strain properties, age, and 
environmental stress factors (Arsène et al., 2021). 
Extraction of Mannan-oligosaccharides from yeast wall 
matrices are not only used as fermentable source of carbon 
by probiotic bacteria but also as binding agents to type-1 
fimbriae of Gram-negative pathogens, thus interfering with 
epithelial colonization. Inulin-derived fructans and fructo-
oligosaccharides, at a dietary concentration of 0.5-1.0 
stimulates the growth of Bifidobacterium spp., and 
Lactobacillus spp. and increase short-chain fatty acid 
production, especially butyrate, which is the energy source 
of choice of the colonic epithelial cell (Panwar et al., 2022). 
Normal levels of inclusion are 50 to 300mg/kg of single 
essential oils in feed and 100-500mg/kg of blended 
extracts. The short and medium fatty acids, including 
butyric, propionic acid, caprylic acid, and capric acid, have 
been shown to have bacteriostatic effects with Gram-
negative pathogens and simultaneously anabolic effects 
with commensal anaerobes (Gomez-Osorio et al., 2021). 
 
Processing Plant Interventions (Carcass 
Decontamination): Post-harvest operations in processing 
facilities are considered to be the key control points of 
pathogen contamination reduction or elimination in carcass 
surfaces, prevention of cross-contamination during 
processing, and microbiological safety of the final poultry 
products (Morshdy et al., 2025). Application of lactic acid 
solutions (2-4% concentrations) by immersion, spray, or 
foam results in log reductions of one to two in Salmonella, 
Campylobacter (Figure 3), and generic E. coli population 
on carcass surfaces (Bueno López et al., 2022). 
Peroxyacetic acid (0.01-0.1%) is a potent antimicrobial 
agent that exhibits oxidation to cause antimicrobial effects, 
and it breaks down to acetic acid and water, leaving behind 
slight residues (Duarte et al., 2022). Antimicrobial 
solutions containing carvacrol, thymol, and eugenol, at 
concentrations of 0.1-0.5%, appear to demonstrate 
antimicrobial activity against surface-associated pathogens 
when solubilized with appropriate surfactants or 
solubilizing agents increasing aqueous solubility and 
accessibility to the substrate. Campylobacter and 
Salmonella bacteriophage cocktails used as spray systems 
with concentration of 107-109 PFU/mL will generate one to 
three log reductions on targeted pathogens (Cole, 2024). 
Lightly acidic electrolyzed water (pH 5.065 oxidation-
reduction potential +600 to +900mV) has antimicrobial 
activity similar to traditional chlorine treatments, and a 
nearly neutral pH that reduces equipment corrosion and the 
effects of meat quality (Roobab et al., 2023). 
 
Packaging and Post-Harvest Applications: Interventions 
that are done post-processing on the packaged poultry 
products are the last chance of improving the 
microbiological safety and shelf-life of the product by 
treatment using beneficial microorganisms and natural 
antimicrobials (Papadochristopoulos et al., 2021). Active 

systems involve the inclusion of antimicrobial substances 
into the packaging materials or as additives that deactivate 
into active form during the storage period (Deshmukh, R. 
K., & Gaikwad, 2024). Essential oil impregnated sachets of 
oregano oil, thyme oil or cinnamon oil release volatile 
terpenes and phenolic compounds which spread throughout 
the package headspace, condense on product surfaces, and 
inhibit the growth of bacteria on their surfaces (Bibow & 
Oleszek, 2024). Chitosan-based coatings exhibit inherent 
antimicrobial activity mediated by electrostatic interactions 
with negatively charged bacterial cell membranes, 
resulting in membrane destabilization and the release of 
intracellular contents (Yilmaz Atay, 2020). Coating of 
poultry surfaces with chitosan solutions (0.5-2.0% w/v) at 
pH 4-6 forms transparent films which inhibit the rate of 
microbial growth and extended refrigerated shelf-life three 
to seven days over uncoated controls (Giatrakou et al., 
2023). Applied on concentrations of 106-108 CFU/g 
product surface, lactic acid bacteria cultures (especially 
Lactobacillus sakei, L. lactis, and Carnobacterium 
maltaromaticum) exhibit anti-listerial effects and increase 
refrigerated shelf-life (Pellegrini, 2024). 
 
Impact on Food Safety and Public Health: The growing 
demand for safe and sustainable poultry production 
highlights the importance of non-antibiotic interventions. 
By combining beneficial microbes with natural 
antimicrobials, producers can mitigate foodborne 
pathogens, slow the emergence of AMR, and align with 
One Health objectives that connect animals, human, and 
environmental well-being. 
 
Reduction of Salmonella, Campylobacter, and E. coli 
Contamination: Among major agents of foodborne 
disease worldwide are Salmonella, Campylobacter, and 
pathogenic E. coli, which are frequently associated with 
contaminated poultry meat and eggs. The established 
methods of control, such as the use of chemical 
disinfectants and antibiotics, are being undermined by the 
rising cases of antibiotic resistance and antibiotic residues 
(Davies & Wales, 2019). The use of probiotics in 
combination with plant-based biotics helps to counteract 
these pathogens in a number of production phases. 
Probiotics block colonization by producing organic acids 
and bacteriocins in the gastrointestinal tract, and 
antimicrobials produced by plants destroy cell membranes 
and biofilm frameworks in pathogen cells. This twofold 
action reduces the bacterial content of feces and cecal 
material and, thus, minimizes the chances of cross-
contamination in the slaughterhouse. Natural 
antimicrobials, including lactic acid, acetic acid, and 
essential-oil rinses, may also be used at the processing 
stage and reduce surface contamination by an additional 23 
log cycles (Chakraborty & Dutta, 2022). The net effect is a 
quantifiable decrease in the prevalence of the pathogens in 
the retail poultry products, which will directly increase 
food safety and positively affect the health of consumers. 
 
Influence on AMR Development: Abuse of antibiotics in 
poultry farming greatly accelerates the development of 
AMR strains of bacteria. Such resistant strains can spread 
resistance determinants to the human pathogens through 
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the food supply chain. A sustainable solution that can help 
in checking this problem is provided by natural 
antimicrobials and probiotics. In contrast to the traditional 
antibiotics, natural antimicrobials can act upon multiple 
cellular structures- causing membrane disruption, 
enzymatic activity suppression, and creation of oxidative 
stress- and making the emergence of resistance relatively 
less likely (Nourbakhsh et al., 2022). Probiotics also 
overcome AMR by hindering colonization of resistant taxa 
and degrading remaining antibiotics in the gastrointestinal 
tract. In addition, other studies have reported the 
downregulation of resistance genes, including the tetA and 
blaTEM genes, in poultry fed with probiotic-phytobiotic 
mixes. Replacement of prophylactic antibiotics with these 
natural products, therefore, lowers the level of antibiotic 
residues in poultry meat and eggs, curbs horizontal gene 
transfer among the microbiota, and enhances the 
worldwide AMR containment strategies (Abreu et al., 
2023). 
 
Role in Sustainable and Antibiotic-Free Poultry 
Production: The ultimate goal of sustainable poultry 
production is to have high productivity, animal welfare, 
environmental protection, and food safety. The 
combination of useful microbes and natural antimicrobials 
is one of the foundations of this strategy. These natural 
approaches promote sustainability through increased gut 
integrity and the immune system, which will reduce the 
frequency of diseases and the need to perform therapeutic 
interventions, and thus the general health and well-being of 
animals. The decrease in the use of antibiotics also leads to 
the reduction of the release of drug residues into the soil 
and water, thus eliminating environmental pollution (Yang 
et al., 2021). From a consumer perspective, products 
labeled as antibiotic-free or raised under natural production 
systems align with the growing demand for safe, ethical, 
and high-quality food. At the production level, such 
interventions improve feed conversion efficiency, reduce 
mortality rates, and enhance economic profitability for 
producers. At a broader policy level, the incorporation of 
probiotics, prebiotics, essential oils, and organic acids into 
national poultry production strategies is consistent with the 
One Health paradigm, which recognizes the 
interconnectedness of human, animal, and environmental 
health (Zheng et al., 2025). Encouraging the adoption of 
these approaches can reduce reliance on antibiotics, limit 
the progression of AMR, and promote a more sustainable 
and safe future for poultry production. 
 
Challenges Future prospective  
Heterogeneity of Efficacy: Despite strong evidence 
supporting the effectiveness of beneficial microorganisms 
and natural antimicrobial agents in poultry production 
systems, their large-scale adoption remains constrained by 
several challenges. One of the most significant barriers is 
the heterogeneity of efficacy, which is influenced by 
multiple interacting factors, including strain specificity, 
host age, diet composition, and environmental conditions 
such as temperature and humidity. Comparative studies 
demonstrate that not all Lactobacillus or Bacillus strains 
exhibit equivalent acid–bile tolerance, colonization 
efficiency, or persistence within the avian gastrointestinal 
tract. Similarly, the bioactivity of phytochemical-derived 

compounds is strongly affected by plant genotype, 
harvesting time, extraction procedures, and storage 
conditions (Ngurube, 2022). 

Furthermore, feed formulation, gastrointestinal pH, 
and water quality critically influence probiotic viability and 
the release of bioactive constituents, emphasizing the need 
for standardized and optimized delivery systems. 
Commercial formulations frequently display wide 
variability in microbial load, strain composition, and 
additive concentration, resulting in inconsistent product 
performance. The absence of universally accepted in vitro 
and in vivo validation protocols further limits inter-study 
comparability, while the predominance of controlled-
environment experiments restricts extrapolation to 
heterogeneous farm conditions (Vashishat et al., 2024). 

 
Economic and Scaling Challenges: Beyond biological 
variability, economic and scaling constraints represent 
major obstacles to the widespread implementation of 
beneficial microbes, botanicals, and bacteriophages in 
poultry production. High-quality probiotic formulations, 
essential oils, phage cocktails, and nano-encapsulated 
phytochemicals often incur costs that exceed those of 
conventional antibiotics, limiting adoption, particularly 
among small- and medium-scale farmers. In many cases, 
comprehensive cost–benefit analyses are lacking, making 
it difficult for producers to justify higher upfront 
investments despite potential long-term gains in flock 
health, productivity, and food safety.                                                                                       

Additional challenges include limited supply chains, 
inconsistent product availability, inadequate distribution 
networks, and insufficient extension services, especially in 
developing countries. Scaling up the production of 
consistent-quality botanicals and phages remains 
technically demanding due to batch-to-batch variability, 
stability concerns, and regulatory requirements. Moreover, 
global regulatory frameworks for safety and efficacy 
assessment remain fragmented, prolonging product 
development timelines and market entry. Addressing these 
challenges will require economic incentives, such as 
subsidies, public–private partnerships, and supportive 
policy frameworks, alongside the standardization of 
industrial manufacturing processes. Such measures could 
facilitate large-scale production of uniform, affordable bio-
based alternatives while ensuring farmer-level feasibility 
and sustained adoption. 
 
Future prospective: Recent advances in high-throughput 
sequencing, metagenomics, and microbiome profiling have 
significantly enhanced understanding of the poultry 
gastrointestinal ecosystem, enabling the identification of 
stress-tolerant probiotic lineages with improved metabolic 
and immunomodulatory functions (Wang et al., 2024). 
Next-generation probiotics, including Akkermansia 
muciniphila, Faecalibacterium prausnitzii, and 
Clostridium butyricum, show strong potential for 
enhancing gut health and suppressing pathogenic 
colonization (Al-Fakhrany & Elekhnawy, 2024). 
Technological innovations such as microencapsulation, 
lyophilization, and nanotechnology-based delivery systems 
(e.g., nanoemulsions, liposomes, and polymeric 
nanoparticles) offer improved stability, bioavailability, and 
targeted release of microbial and phytochemical agents, 
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protecting them from gastrointestinal stressors (Ani et al., 
2024). 

Importantly, the integration of machine learning and 
artificial intelligence (AI) represents a promising frontier 
in this field. AI-driven models can support strain selection, 
microbiome response prediction, and optimization of 
synergistic combinations of probiotics, botanicals, and 
phages tailored to specific production systems. These tools 
may enable precision nutrition strategies that enhance 
efficacy, reduce variability, and improve economic returns. 
Within a One Health framework, such interdisciplinary 
approaches can contribute to mitigating AMR while 
simultaneously improving poultry health, food safety, and 
farm profitability. 
 
Conclusions: The transition of poultry farming from a 
production that is not reliant on antibiotics to the 
application of natural antimicrobials is a required 
development and a promising trend towards the creation of 
sustainable food systems. The empirical evidence shows 
that the application of useful microorganisms and plant-
based antimicrobials, when appropriately implemented in 
the production chain, may positively affect the process of 
foodborne pathogen suppression, leaving or even raising 
the parameters of production. The optimization of these 
interventions is provided with a scientific basis of a 
mechanistic concept of competition elimination, immune 
regulation, biofilm disintegration, and quorum-sensing 
disruption. The important issues to tackle in the future are 
to determine the efficacy of the strain used, devise effective 
delivery methods, and standardized quality-control 
parameters, and conduct economic viability studies. Multi-
hurdle strategies, which include probiotics, prebiotics, 
essential oils, organic acids, and bacteriophages, have 
synergies that outperform what each of them delivers. The 
poultry industry needs to use these evidence-based 
substitutes as regulatory systems keep changing and the 
consumers are increasingly interested in antibiotic-free 
products; more research on microbiome engineering, next-
generation probiotics and precision application 
technologies should improve the efficacy and acceptance 
of natural antibiotics in the global poultry production 
systems. 
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