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 Wild boars (Sus scrofa) have recently been identified as significant reservoirs and 
amplifiers of various emerging zoonotic viruses. In northeastern China, the increasing 
overlap between wild boar habitats, livestock farming areas and human settlements 
has raised serious concerns about cross-species transmission and spatial spillover of 
wild boar-borne infectious diseases. This study aimed to define the ecologically 
suitable distribution of wild boars and associated viruses, identify spatial hotspots of 
emerging wild boar-borne disease risk and validate the circulation of these pathogens 
within wild boar populations in high-risk areas. The goal was to provide a scientific 
basis for surveillance and transboundary prevention in ecologically sensitive regions. 
The MaxEnt ecological niche model was applied to predict the suitability of wild 
boars and spatial risk of disease emergence. A fuzzy overlay analysis was then 
conducted to delineate high-risk zones for wild boar-borne disease emergence. Within 
these high-risk zones, least-cost path modeling was used to analyze ecological 
connectivity and to identify major transmission routes. Between January 2023 and 
December 2024, a total of 158 wild boar serum samples were collected along the 
identified transmission routes. ELISA assays were used for serological testing and 
antibody prevalence was calculated. The MaxEnt model showed high predictive 
accuracy for wild boar distribution (AUC = 0.810, Kappa = 0.816) and for disease 
risk mapping (AUC = 0.818, Kappa = 0.803). The total area of high-risk zones for 
emerging wild boar-borne diseases reached 12,188.68 km², mainly located in 
Mudanjiang, Jixi, and Shuangyashan city. Three major transmission routes were 
identified within these regions and all converging in Hulin County. This area is 
characterized by semi-free-range hybrid wild boar farming and strong landscape 
connectivity, making it a critical node for potential virus spread. Serological testing 
confirmed PRV antibodies in 8.86% (14/158) of samples and PCV2 antibodies in 
5.06% (8/158). The highest PRV antibody prevalence (21.05%, 95%CI: 9.55-37.32) 
was observed in Hulin County, suggesting its central role in local virus maintenance 
and transmission. This study proposes a four-stage spatial framework: habitat 
modeling, risk mapping, routes identification and serological validation for 
comprehensive assessment of wild boar-borne disease risks. It provides both 
theoretical and practical value for targeted surveillance and transboundary disease 
preparedness in ecologically sensitive regions 
 

Key words:  
Ecological niche modeling 
Porcine circovirus type 2 
(PCV2) 
Pseudorabies virus (PRV) 
Serological validation 
Transmission routes 
Wild boar-borne diseases 

 

To Cite This Article: Wang H, Wang Y, Li Y, Wang X, Chen X, Yu S and Wang X, 2025. Spatial risk prediction and 
serological validation of emerging wild boar-borne diseases in eastern heilongjiang, china. Pak Vet J, 45(4): 1721-1732. 
http://dx.doi.org/10.29261/pakvetj/2025.336  

 
INTRODUCTION 

 
Wildlife hosts play increasingly prominent roles in the 

emergence of viral zoonoses, and wild boars (Sus scrofa) 

have been implicated as key reservoirs of veterinary and 
zoonotic viruses. With a rapidly expanding geographic 
range and frequent contact with domestic livestock and 
humans, wild boars represent critical nodes in the ecology 
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of transboundary diseases. On the global scale, the rapid 
growth and spatial expansion of wild boar populations, 
driven by climate change and land-use transformation has 
created favorable conditions for pathogen persistence, 
amplification and cross-border transmission. Over the past 
decade, multiple studies have identified wild boars as 
asymptomatic or subclinical carriers of viruses such as 
African swine fever virus (ASFV), classical swine fever 
virus (CSFV), pseudorabies virus (PRV), porcine 
circovirus types 2 and 3 (PCV2/3), hepatitis E virus (HEV), 
rabies virus (RV) and canine distemper virus (CDV) 
(Meng, 2013; Liu et al., 2021; Acosta et al., 2022).  

In Europe and Northeast Asia, ASFV is widely 
detected in wild boar carcasses, with passive surveillance 
indicating much higher positivity in carcasses than in 
hunted animals (Denstedt et al., 2021). After ASFV spread 
into China in August 2018, genotype II was rapidly 
detected across more than 20 provinces (Zhao et al., 2019), 
yet serological surveys of ASFV antibodies in Chinese wild 
boars remain largely absent. This rapid continental-scale 
spread underscores how global disease pressure can 
translate into acute regional vulnerability, particularly in 
areas where systematic wildlife surveillance remains 
insufficient. As such, Heilongjiang provides a critical lens 
through which to examine how global drivers of disease 
emergence interact with local ecological and surveillance 
constraints. By contrast, sero-epidemiological data for 
other viruses such as HEV, CDV and RV have been 
reported from different regions of China, indicating that 
wild boars can sustain substantial levels of viral exposure 
and may contribute to the circulation of multiple pathogens 
(Wu et al., 2022; Wang et al., 2023; Wang et al., 2024).  

Heilongjiang Province, which is in northeastern China 
and borders far Eastern Russia contains one of China’s 
largest continuous forest ecosystems, providing optimal 
conditions for wild boar habitats and pathogen persistence. 
Moreover, its position along major transboundary wildlife 
movement corridors render the region particularly 
susceptible to the introduction and onward spread of 
emerging infections. This region acts as a critical 
intersection where global disease dynamics, ecological 
changes, and wildlife movement converge, making it 
especially vulnerable to cross-border pathogen 
transmission. Climate change, forest exploitation and 
changing land use patterns have contributed to altered wild 
boar behavior, including increased migration and 
expanding range boundaries (Zhang et al., 2024). 
However, no published study has systematically described 
the infection status of wild boar-borne diseases in this 
region, and the spatial distribution of viral exposure risk 
and the role of ecological connectivity in promoting disease 
maintenance and spread remain poorly understood. 

To fill this significant research gap, we established a 
spatially explicit analytical framework that integrates 
ecological niche modeling with multi-pathogen risk 
prediction (Bosch et al., 2014; Lim et al., 2022; Li et al., 
2022) and field-based serological validation to investigate 
the spatial epidemiology of emerging infectious diseases in 
wild boar populations of eastern Heilongjiang Province. 
This approach enabled the identification of suitable wild 
boar habitats, the spatial distribution of viral infection risks 
and the ecological connectivity among high-risk zones. 
Furthermore, model predictions were validated through 

serological surveys conducted across the study area. By 
combining spatial modeling with ground-truth data, this 
study provides a comprehensive understanding of disease 
dynamics in a transboundary context and offers a scientific 
basis for targeted wildlife disease surveillance and 
proactive cross-border risk mitigation strategies. 
 

MATERIALS AND METHODS 
 

Study area: The eastern region of Heilongjiang Province 
lies between 125.24°–135.07°E and 43.43°–48.48°N. It 
covered an area of approximately 136,900Km² and 
encompassing 8 cities, including Yichun, Hegang, Jiamusi, 
Shuangyashan, Qitahe, Jixi, Mudanjiang and Harbin (Fig. 
1). The landscape dominated by plains and mountains is 
characterized by temperate forests interspersed with 
wetland ecosystems, providing optimal habitats for wild 
boars and contributing to pathogen persistence. According 
to the provincial catalogue, the region hosts approximately 
476 nationally protected wildlife species, including 17 
under Class I and 65 under Class II protection with 
representative species such as the Amur tiger, sable, wild 
boar, red deer and brown bear. This rich biodiversity not 
only enhances the ecological value of the region but also 
provides a vital foundation for scientific research. 
 
Wild boar and wild boar-borne diseases occurrence 
points collection and pre-processing: It has been 
combined field investigations with multiple data sources to 
obtain comprehensive spatial distribution data from 2010-
2024 on wild boars and wild boar-borne diseases in eastern 
Heilongjiang Province. These included published domestic 
and international literature, media reports, the Global 
Biodiversity Information Facility (https://www.gbif.org/) 
and records from local health authorities. Cross-checked 
reports from different sources and retained only cases 
consistently documented across multiple channels to 
ensure data reliability. Underreporting and misdiagnosis 
due to symptom overlap challenged data accuracy. So only 
laboratory-confirmed cases were included to minimize 
uncertainties. 

In total, 268 distribution records of wild boars and 109 
records of associated emerging infections, such as hepatitis 
E virus (HEV), porcine parvovirus (PPV), African swine 
fever (ASF), pseudorabies virus (PRV) and porcine 
circovirus type 2 (PCV2) were complied. To address spatial 
autocorrelation (SAC), the dataset was Geographic 
processed and spatial analysis using SDM Toolbox v1.1c 
within ArcGIS 10.8 (https://developers.arcgis.com/). A 
spatial filtering procedure was applied to maintain a 
minimum distance of 5km between occurrence points to 
reduce geographic sampling bias. The dataset was 
projected to the UTM-WGS-1984 coordinate system, and 
the spatial resolution was resampled to 30 arc-seconds to 
ensure consistency for subsequent analyses. 
 
Selection and processing of environmental variables: A 
total of 67 climate variables were extracted from the 
CHELSA v1.2 database (https://chelsa-climate.org/). The 
Human Influence Index was obtained from the 
Socioeconomic Data and Applications Center (SEDAC) 
(http://sedac.ciesin.columbia.edu/wildareas/), while land 
use and river network data were sourced from the Institute  
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Fig. 1: Study area of the eastern region of Heilongjiang Province in China (Data source：The administrative boundary map of eastern Heilongjiang 
Province was obtained from the Resource and Environment Science Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/.) 
 
of Geographic Sciences and Natural Resources Research, 
Chinese Academy of Sciences (https://www.resdc.cn). 
Slope and elevation data were derived from 100-meter 
resolution digital elevation models (DEMs) provided by 
the Computer Network Information Center of the Chinese 
Academy of Sciences and the Global Science Data Hub 
(http://www.gscloud.cn). Surface solar radiation data were 
accessed from the National Tibetan Plateau Data Center 
(https://data.tpdc.ac.cn/home). All spatial layers were 
resampled to a uniform resolution of 30 arc-seconds 
(approximately 1km) using ArcGIS to ensure consistency 
across datasets. 

The variable selection followed the method proposed 
by Liu et al. (2024) to reduce multicollinearity and avoid 
overfitting in the modeling process. Environmental 
variable preparation and supplementary analysis were 
performed with ENMTools version 1.0.5 
(http://ydl.oregonstate.edu/pub/cran/web/packages/ENMT
ools/index.html). All environmental layers were imported 
into ArcGIS and Pearson correlation analysis was 
performed using the multivariate analysis tool. For variable 
pairs with a high correlation coefficient (|R| > 0.85), only 
the variable with a greater contribution or higher 
permutation importance in preliminary MaxEnt runs was 
retained. The Variance Inflation Factor (VIF) analysis was 
conducted using linear regression to identify 
multicollinearity between continuous and categorical 
variables. Variables with a VIF greater than 10 were 

excluded to ensure that only independent predictors 
remained in the final model. This approach ensured that the 
final model included only ecologically relevant and non-
redundant predictors. 
 
Modeling building 
Parameter optimization for MaxEnt model 
construction: MaxEnt version3.4.4 
(http://biodiversityinformatics.amnh.org/open_source/M
axEnt/) was used to build the ecological niche models. 
Because relying on default parameters can lead to 
overfitting and inaccurate predictions (Fernández and 
Morales, 2019; Zhao et al., 2022), we optimized the 
feature classes (linear, quadratic, hinge, product and 
threshold) and the regularization multiplier (0.1–4, 
increment 0.1) using the Kuenm package (Cobos et al., 
2019). Model fit and complexity for each parameter 
combination were evaluated using the corrected Akaike 
Information Criterion (AICc), the area under the receiver 
operating characteristic curve (AUC), the 10% training 
omission rate and the minimum training presence 
omission rate (Gutierrez and Heming et al., 2018; Ouyang 
et al., 2022), and the optimal parameter combination was 
identified based on these integrated performance metrics. 
Through this systematic optimization process, it has been 
significantly enhancing the predictive performance of the 
model, ensuring that the results are both scientifically 
rigorous and practically applicable. 



Pak Vet J, 2025, 45(2): 1721-1732. 
 

1724

Habitat suitability modeling: The de-redundant occurrence 
data and the screened environmental variables were 
imported into MaxEnt with 80% of the occurrence records 
used for training dataset and the remaining 20% for testing 
dataset. Model output was set to the logistic format to obtain 
the probability of habitat suitability. The jackknife test was 
applied to evaluate the contribution and permutation 
importance of each environmental variable. The model ran 
ten times in subsample mode and the mean prediction from 
these runs was used to improve stability and consistency.  
 
Model validation: Model performance was evaluated 
using receiver operating characteristic (ROC) curves and 
the area under the curve (AUC) (Ahmadi et al., 2023). The 
Kappa statistics were also calculated using the Presence 
Absence package in R to further assess model accuracy, 
and both indices were interpreted following published 
criteria (Dongyang et al., 2023; Shi et al., 2025). 
 
Classification of habitat suitability levels: The predicted 
habitat suitability maps were converted to raster format using 
Conversion tool in ArcGis 10.8, and the Reclassify tool was 
then used to divide the raster data into suitability levels 
(Ikhumhen et al., 2020). The classification breakpoints were 
determined using three thresholds, namely the training 
sensitivity sum (TSS) threshold, the MTSPS threshold and 
the true presence threshold (TPT) (Zhao et al., 2025). 
 
Prediction of high-risk areas for wild boar-borne 
diseases: The Fuzzy Overlay function within the Spatial 
Analyst tool of ArcGIS 10.2 was used to identify high-risk 
areas. The habitat suitability map of wild boar and the 
distribution risk map of wild boar-borne diseases in eastern 
Heilongjiang Province were overlaid by selecting the 
“AND” option in Fuzzy Overlay (He et al., 2024). This 
approach ensured that an area was classified as high risk 
only when all considered environmental and climatic 
factors consistently indicated elevated risk. 
 
Connectivity analysis within high-risk areas for wild 
boar-borne diseases 
Construction of the resistance layer: To construct the 
resistance layer for assessing cross-border transmission risk, 
vegetation and elevation were selected as key environmental 
factors based on movement patterns and foraging habits of 
wild boars. Vegetation density influences both food 
availability and the level of cover, thereby directly shaping 
habitat suitability. Elevation affects movement potential, as 
variations in terrain and altitude influence accessibility and 
the likelihood of long-distance dispersal. 

Each vegetation and elevation grid cell was assigned 
a corresponding resistance value and converted into a 
classified layer. Vegetation data was already available in 
classified form, whereas elevation data were reclassified in 
ArcGIS based on known habitat preferences of wild boars. 
Resistance values ranging from 1 to 9 were assigned to 
different habitat types using an expert-based evaluation, 
with lower values (e.g., 1) indicating wild boar resistance 
and greater ease of movement, and higher values (e.g., 9) 
representing maximum resistance and limited movement 
potential (Carroll et al., 2020). 

Finally, the vegetation and elevation layers were 
integrated using the Weighted Overlay tool in ArcGIS 10.8 
(Carroll et al., 2020). The resulting composite resistance layer 

provides a robust spatial basis for analyzing wild boar 
movements within high-risk areas and offers valuable support 
for subsequent studies on disease transmission dynamics. 
 
Calculation of the LCP: The Least Cost Path (LCP) model 
was used to predict potential migration routes of wild boars 
within high-risk areas (Özcan et al., 2020). Land cover and 
elevation were reclassified using the Jenks natural breaks 
method and used as cost factors, and resistance values from 
1 (lowest) to 9 (highest) were assigned according to wild 
boar activity preferences and landscape characteristics such 
as vegetation density, human infrastructure and topography. 
The values represent the relative permeability of different 
landscape features to wild boar movement, with lower values 
indicating higher permeability and higher values indicating 
greater resistance. The resulting cost surface was combined 
with outbreak locations using the Grouping Analysis tool in 
ArcGIS 10.8 to construct LCPs model (Özcan and Erzin, 
2020), and paths originating far from the border or already 
merged into primary routes were excluded. 
 
Serological validation within high-risk areas for wild 
boar-borne diseases 
Serum collection: From January 2023 to December 2024, 
a total of 158 serum samples from hybrid wild boars were 
collected along potential high-risk transmission routes 1-3 
of wild boar-borne diseases in eastern Heilongjiang 
Province. Capture devices were positioned above the wild 
boar’s mouths to maintain a natural standing posture, which 
facilitated safe and accurate access to the blood vessels. 
Blood was drawn from the internal jugular vein using a 
20mL syringe, and 5mL of whole blood was immediately 
processed with a portable centrifuge at 3,000×g for 10 
minutes to separate the serum. The serum samples were 
stored at −20℃ until further analysis. 
 
Serological analysis: Serum samples were analyzed using 
a commercial ELISA kit in accordance with the 
manufacturer’s protocol. The results were expressed as the 
inhibition rate of the optical density (%OD), calculated 
using the formula that was % OD =100 × (S–N)/(P-N), 
where S denotes the sample reading, N and P are the optical 
density values for the negative and positive controls, 
respectively. Based on the assay criteria, ELISA results 
were interpreted using specific %OD thresholds. For PRV 
antibody detection, samples with %OD values below 50 
were classified as positive, values between 50 and 60 were 
considered doubtful, and values above 60 were classified 
as negative. For PCV2 antibody detection, %OD values 
≥100 indicated a positive result, values between 15 and 100 
were considered doubtful, and values ≤15 were deemed 
negative (Wang et al., 2023). 
 
Statistical methods: The serological prevalence was 
calculated as the proportion of positive samples relative to 
the total number of samples and expressed as a percentage. 
The true prevalence for both the overall dataset and spatial 
groupings was estimated using the AusVet Epitools 
software package (https://epitools.ausvet.com.au/) 
(Lishchynskyi et al., 2022). Associations between apparent 
prevalence and factors such as location, age, and sex were 
assessed using Fisher’s exact test with statistical 
significance determined at P≤0.05. For all estimates, 95% 
confidence intervals were calculated and reported. 
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RESULTS 
 
Habitat Suitability Modeling 
Determination of occurrence data and environmental 
variables: This approach retained the most informative 
records while minimizing unnecessary exclusions, 
resulting in 213 occurrence points for wild boar and 78 
records for wild boar-borne diseases after processing. 

Correlation analysis was first used to select 12 
environmental variables for modeling wild boar 
distribution and 10 variables for modeling wild boar-borne 
diseases (Fig. 2). The importance of each variable was then 
assessed in the MaxEnt model using the jackknife test and 
variables with a contribution rate greater than 5 were 
identified as key predictors. The collinearity analysis for 
these environmental variables revealed VIF values between 
1.395 and 7.487, all of which were below the commonly 
accepted threshold of 10, suggesting that there was no 
indication of multicollinearity present. Finally, the 
variables of hf, bio15, bio3, prec5, alt, and bio7 were 
retained as key predictors in the wild boar distribution 
model (Table 1); In the modeling of wild boar-borne 
diseases, although the contributions of rs, bio16, and 
prec07 were all less than 5%, but these indispensability was 

notable as removing these variables significantly reduced 
the model’s gain value. Therefore, these variables must be 
retained. The collinearity tests for these variables indicated 
VIF values between 2.548 and 8.437, all falling below the 
threshold of 10, thereby confirming that no 
multicollinearity issues were present. Ultimately, hf, 
dis.river, bio03, rs, bio16, and prec07 were identified as the 
key variables for the modeling of wild boar-borne diseases 
(Table 1). 

 
Table 1: Analysis of environmental variables contribution rates of wild 
boar and wild boar-borne diseases 
Category Variable Percent 

contribution (%) 
Permutation 
importance (%) 

VIF 

 
 
wild boar 

Hf 32.8 21.7 1.395 
bio15 22.2 9.9 2.458 
bio03 10.8 10.2 7.487 
prec05 7.1 17.7 4.566 
Alt 6 7.7 6.35 
bio7 5.9 2.2 5.671 

 
 
wild boar–borne 
infectious diseases 

Hf 73.7 52.5 6.324 
dis.river 8 9.6 3.475 
bio03 5.2 13.9 2.548 
Rs 4.1 2.3 4.88 
bio16 2.5 6.6 8.437 
prec07 2.2 0.5 5.231 

 

 
 
Fig. 2: Correlation heatmap of environmental variables. The figure illustrates the correlation coefficients between various environmental variables. The 
color scale ranges from −1 (indicating strong negative correlation and shown in red) to +1 (indicating strong positive correlation and shown in blue). 
Correlation coefficients near 0 represent weak or no correlation. To avoid overfitting, for pairs of variables with a correlation coefficient |R| > 0.85, 
one variable is selected based on its stronger association with the geographical distribution of wild boar and the wild boar-borne diseases. This approach 
ensures the robustness and accuracy of the model's predictions by prioritizing the most relevant variables. 
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Model evaluation: The model parameter with FC = lph 
and RM = 0.7 was chosen for wild boar distribution 
modeling (Fig. 3-A), while the model parameter with FC = 
lpth and RM = 1.2 was selected for modeling the 
distribution of wild boar-borne diseases (Fig. 3-B). 
 

 

 
 
Fig. 3: Scatter plots of optimal MaxEnt models. (A)The candidate MaxEnt 
models for wild boar distribution;(B). The candidate MaxEnt models for 
wild boar-borne emerging infectious disease distribution. A total of 1,160 
candidates MaxEnt models under different combinations of FC and RM 
parameters were ran using the Kuenm package based on the distributions 
of wild boars and emerging wild boar-borne diseases. The blue triangles 
mark the optimal model that met the criteria of statistical significance, an 
omission rates below 5% and delta AICc values less than 2. The red 
circles indicate non-significant models and grey circles represent all 
candidates models. 

 
Model validation demonstrated strong predictive 

performance with an AUC value of 0.810 (SD=0.175) and 
Kappa value of 0.816 for the distribution model of wild 
boar, indicating that the model prediction results are 
reliable (Fig. 4-A); Similarly, the distribution model of 
wild boar-borne diseases achieved a high AUC value of 
0.818 (SD=0.120) and Kappa value of 0.803, suggesting 
that the model performed well and consistent accuracy 
(Fig. 4-B). 

 
 
Fig. 4: The receiver operating characteristic (ROC) curve assessing the 
predictive performance of distribution models. (A) The performance of 
wild boar distribution model with an AUC of 0.810; (B) The performance 
of wildboar-borne diseases distribution model with an AUC of 0.818. 
High AUC values indicate that the model performed well and consistent 
accuracy in differentiating between suitable and unsuitable habitats. 
 

Spatial Risk Mapping 
Model Prediction: Medium-high suitability areas for wild 
boar were concentrated in the central and eastern study 
region, mainly in Jixi, Shuangyashan, Jiamusi, Harbin and 
Mudanjiang, with smaller patches in Yichun and Hegang. 
The total area of high suitability was 14,220.43 km², 
medium suitability 19,411.81 km² and low suitability 
92,066.92 km². The total area of medium-high suitability 
accounts for 14.99% of the entire study are (Fig. 5-A); for 
wild boar-borne diseases, medium-high risk zones were 
mainly in the south and west, particularly in Jixi, 
Mudanjiang and Shuangyashan city, with smaller areas in 
Jiamusi. The total area of high risk was 12,188.68 km², 
medium risk 7,200.18 km² and low risk 54,150.80 km².The 
total area of medium-high risk zones accounts for 8.64% of 
the entire study area (Fig. 5-B). 

Spatial distribution maps of habitat suitability are 
shown for (A) wild boar and (B)wild boar-borne diseases. 
Suitability levels were classified into four categories based 
on the TSS training sensitivity threshold, MTSPS threshold 
and TPT balance threshold: unsuitable (P≤0.1542, gray), 
low (0.1542 <P≤ 0.40, orange), medium (0.40 <P≤0.5639, 
green) and high (P>0.5639, dark blue). Higher suitability 
levels indicate a greater likelihood of wild boar presence 
and an elevated risk of disease transmission. Fitting 
analysis with occurrence records revealed that most sample 
points were located within medium–high suitability areas. 
 
Response Curve Analysis: MaxEnt modelling identified 
12 environmental variables influencing the distribution of 
wild boar and wild boar-borne diseases. To further 
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determine the threshold ranges of these variables in the 
areas most suitable for wild boar, we set a high suitability 
index of 0.5639 to extract the corresponding variable 
ranges, which showed that optimal wild boar distribution 
occurs when bio03 <159, hf > 48, prec05 > 56 mm, bio15 
< 82, elevation (alt) ranges from 73 to 144 m and bio07 is 
between 47.7 and 49.5°C. These thresholds indicate that 
wild boars preferentially occupy environments with 
relatively stable thermal conditions, moderate 
precipitation and intermediate elevations, which are likely 
to reduce physiological stress while ensuring adequate 
vegetation productivity and food availability. The 
positive association with human footprint values above 48 
suggests that wild boars frequently utilize landscapes with 
moderate human disturbance, such as forest–farmland 
interfaces, where anthropogenic food sources and natural 
cover coexist. 
 

 

 
 

Fig. 5: Predicted habitat suitability for wild boar and risk distribution of 
wild boar-borne diseases in eastern region of Heilongjiang Province. 
Spatial distribution maps of habitat suitability are shown for (A) wild boar 
and (B)wild boar-borne diseases. Suitability levels were classified into four 
categories based on the TSS training sensitivity threshold, MTSPS 
threshold and TPT balance threshold: unsuitable (P≤0.1542, gray), low 
(0.1542 <P≤0.40, orange), medium (0.40 <P≤0.5639, green) and high 
(P>0.5639, dark blue). Higher suitability levels indicate a greater 
likelihood of wild boar presence and an elevated risk of disease 
transmission. Fitting analysis with occurrence records revealed that most 
sample points were located within medium–high suitability areas. 

 
The suitability index threshold at 0.3887 was set to 

define highly risk transmission regions for wild boar-borne 
diseases. The extracted variable ranges indicate that 
optimal risk distribution occurs when the bio03<160, 
bio16<95 mm, dis. river<0, hf >100, prec07<80 mm and 

rs<175 W/m² (Fig. 6 and Fig. 7). Ecologically, these 
conditions may reflect environments where pathogens can 
persist more effectively and where contact rates among 
wild boars, water sources and human-influenced 
landscapes are elevated. Proximity to rivers may facilitate 
indirect transmission through contaminated water or shared 
aggregation sites, while higher human activity levels may 
increase opportunities for spillovers between wild boars 
and domestic pigs. 
 
Ecological Connectivity Analysis: The central and eastern 
parts of eastern Heilongjiang Province are considered high-
risk areas for emerging infectious diseases carried by wild 
boar. These areas include the western part of Jiamusi and 
Shuangyashan regions, the central part of Qitaihe and 
Mudanjiang region, and most of Jixi. All these areas face a 
high-risk outbreak of wild boar-borne emerging infectious 
diseases. In contrast, regions such as Yichun, Harbin and 
the eastern part of Jiamusi are classified as moderate to 
low-risk areas for these diseases (Fig. 8). 

In this study, three potential migration routes for wild 
boar-borne emerging infectious disease transmission were 
identified within the high-risk zones, as shown in Fig. 8: 
Route 1 passes through Jixian county, Youyi county and 
Baoqing county in Shuangyashan city and Hulin county in 
Jixi city; Route 2 runs through Qiezihe county in Qitaihe 
City, Baoqing county in Shuangyashan city and Hulin 
county in Jixi city; Route 3 goes through Mishan county 
and Hulin county in Jixi City. These three routes feature 
dense vegetation and abundant water, creating optimal 
habitats for wild boar and facilitating pathogen spread. As 
a result, wild boar-borne emerging infectious diseases are 
highly likely to occur along these routes. It is important to 
note that all three routes pass through Hulin County in Jixi 
city. Hulin county is a major high-risk area for wild boar-
borne diseases in eastern Heilongjiang Province and hosts 
many hybrid wild boar farms, where resource sharing 
between wild and domestic pigs promotes cross-species 
disease transmission. 

Three primary transmission routes (Routes 1-3) 
identified via least-cost path (LCP) model to predict 
potential wild boar-borne emerging infectious disease 
transmission corridors within high-risk areas. Suitability 
levels were classified into four categories based on the 
TSS training sensitivity threshold, MTSPS threshold and 
TPT balance threshold: unsuitable (P≤0.1542, gray), low 
(0.1542 <P≤0.40, orange), medium (0.40 <P≤0.5639, 
green) and high (P>0.5639, dark blue). Higher suitability 
levels indicate high-risk areas for disease 
transmission. All corridors converge at Hulin County 
(Jixi City), a critical transmission zone containing hybrid 
wild boar farms. 
 
Serological Validation: A serological survey was 
conducted and antibodies of PRV and PCV2 was detected 
in three major transmission routes within the high-risk 
areas in the eastern part of Heilongjiang Province，China. 
The total seroprevalence of PRV was 8.86% (14/158, 95% 
CI 4.93-14.42) and the estimated overall true prevalence 
was 8.83% (95% CI 4.89-14.97) (Table 2). For PCV2, the 
total seroprevalence was 5.06% (8/158, 95% CI 2.21-9.73) 
and the estimated overall true prevalence was 4.57% (95% 
CI 1.78-9.74) (Table 3). 
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Fig. 6: Response curves of key environmental variables influencing wild boar habitat suitability based on the MaxEnt model. These patterns indicate the 
optimal environmental variables ranges for wild boar habitat suitability. The black lines represent the mean response curves generated from 10 replicates 
of the MaxEnt model, and the light blue shading indicates the range of variation across replicates. (A) Isothermality index (bio03): The suitability probability 
increases sharply when bio03 exceeds 160 and peaks at 171, then declines gradually; (B) Human activity influence index (hf): The suitability probability 
rises rapidly when hf exceeds 28 and reaching a maximum at 91 before stabilizing; (C) Precipitation in May (prec05): The suitability probability increases 
steeply and peaking at 56 mm, then remains stable; (D) Precipitation seasonality coefficient (bio15), (E) elevation (alt) and (F) annual temperature range 
(bio07) all show an increase in suitability to respective peaks of 77, 82 m, and 49.3 °C then followed by a decline. 

 
Table 2:  Seroprevalence of PRV antibodies in hybrid wild boars from three potential high-risk transmission routes in the eastern region of 
Heilongjiang Province, China 
Variable City County Sample size (n) Sero-positive (n) Apparent prevalence (95%CI) True prevalence (95%CI) Fisher’s exact p 
City Shuangyashan Jixian 27 0 - - 0.385 

Youyi 19 2 10.53% (1.3,33.14) 10.7% (2.18,34.15) 
Baoqing 31 2 6.45% (0.79,21.42) 6.13% (0.88,22.16) 

Jixi Hulin 38 8 21.05% (9.55,37.32) 22.53% (11.32,39.71) 
Mishan 15 2 13.33% (1.66,40.46) 13.86% (3.07,41.44) 

Qitaihe Qitaihe 17 0 - - 
Qiezihe 11 0 - - 

Gender Female 127 10 6.3% (2.76,12.03) 5.95% (2.5,12.29) 0.478 
Male 31 4 19.35% (7.45,37.47) 20.62% (9.2,39.64) 

Age (Mouths) ＞12 69 3 4.35% (0.91,12.18) 3.76% (0.55,12.38) 0.095 
＜12 89 11 12.36% (6.33,21.04) 12.76% (6.79,22.24) 

Total 158 14 8.86% (4.93,14.42) 8.83% (4.89,14.97)  



Pak Vet J, 2025, 45(2): 1721-1732. 
 

1729

Table 3: Seroprevalence of PCV2 antibodies in hybrid wild boars from three potential high-risk transmission routes in the eastern region of 
Heilongjiang Province, China 

Variable City County Sample size (n) Sero-positive (n) Apparent prevalence (95%CI) True prevalence (95%CI) Fisher’s exact p 
City Shuangyashan Jixian 27 0 - - 0.381 

Youyi 19 0 - - 
Baoqing 31 0 - - 

Jixi Hulin 38 3 7.89% (1.66,21.38) 7.75% (1.93,22.25) 
Mishan 15 0 - - 

Qitaihe Qitaihe 17 3 17.65% (3.8,43.43) 18.7% (5.83,44.98) 
Qiezihe 11 2 18.18% (2.28,51.78) 19.31% (4.65,52.47) 

Gender Female 127 6 4.72% (1.75,10) 4.18% (1.33,10.03) 0.656 
Male 31 2 6.45% (0.79,21.42) 6.13% (0.88,22.16) 

Age (Mouths) ＞12 69 2 2.9% (0.35,10.08) 2.13% (0.23,10.07) 0.467 
＜12 89 6 6.74% (2.51,14.1) 6.45% (2.39,14.54) 

Total 158 8 5.06% (2.21,9.73) 4.57% (1.78,9.74)  
 

 
 
Fig. 7: Response curves of key environmental variables affects the predicted risk transmission areas of wild boar-borne diseases generated using the 
MaxEnt model. These results define the optimal environmental ranges associated with the greatest predicted suitability for wild boar–borne emerging 
infectious disease transmission risk. The black lines represent the mean response from 10 replicate runs and the light blue shading indicates variability 
among replicates. (A) Isothermality index (bio03): suitability increases when bio03 exceeds 160 and peaks at 172, then gradually declines; (B) Precipitation 
in the wettest month (bio16): suitability is highest between 70 and 95 mm, decreases sharply after 95 mm and stabilizes beyond 115 mm; (C) Distance 
to rivers (dis.river): suitability is highest at the shortest distances and declines before stabilizing with increasing distance. (D) Human activity influence 
index (hf): suitability increases markedly with higher hf values, peaking at 100. (E) Precipitation in July (prec07): suitability is highest when precipitation is 
below 100 mm, then declines with further increases. (F) Surface solar radiation (rs): suitability is highest below 180 W/m² and decreases steadily with 
higher radiation levels. 
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Fig. 8: Potential transmission routes and habitat suitability for wild boar-
borne emerging infectious diseases in high-risk areas of eastern 
Heilongjiang Province. Three primary transmission routes (Routes 1-3) 
identified via least-cost path (LCP) model to predict potential wild boar-
borne emerging infectious disease transmission corridors within high-risk 
areas. Suitability levels were classified into four categories based on the 
TSS training sensitivity threshold, MTSPS threshold and TPT balance 
threshold: unsuitable (P≤0.1542, gray), low (0.1542 <P≤0.40, orange), 
medium (0.40 <P≤ 0.5639, green) and high (P>0.5639, dark blue). Higher 
suitability levels indicate high-risk areas for disease transmission. All 
corridors converge at Hulin County (Jixi City), a critical transmission zone 
containing hybrid wild boar farms. 

 
No PRV was detected in wild boars from Jixian County, 

Qitaihe city and Qiezihe county. However, PRV was detected 
in Youyi county, Baoqing county, Hulin county and Mishan 
county, with the highest seroprevalence observed in Hulin 
county at 21.05%; For PCV2, no cases were found in the 
three counties of Shuangyashan and Mishan county in Jixi, 
but positive results were detected in Hulin county, Qiezihe 
county and Qitaihe city, with the highest detection rate of 
18.18% found in Qiezihe County. No significant associations 
were found between the occurrence of PRV and PCV2 and 
the city (P=0.385/0.381), gender (P=0.478/0.656), or age 
(P=0.095/0.467) (Tables 2 and Table 3) 
 

DISCUSSION 
 

This study integrated ecological niche modeling 
(MaxEnt), spatial risk prediction and field-based 
serological validation to develop a spatial framework for 
identifying high-risk areas and potential transmission 
corridors of wild boar-borne viral diseases in eastern 
Heilongjiang Province, China. The MaxEnt model showed 
strong performance in predicting both wild boar habitat 
suitability and wild boar-borne disease risk with AUC 
values of 0.810 and 0.818, respectively. These results are 
consistent with the widespread use of MaxEnt in wildlife 
disease ecology (Lim et al., 2022; Díaz-Cao et al., 2023). 
Areas with high habitat suitability particularly around Jixi 
and Shuangyashan, largely overlapped with areas of 
elevated disease risk. This spatial overlap suggests a strong 
correlation between ecological suitability and virus 
exposure. Such convergence between host habitat and 
pathogen risk reflects a well-documented pattern in 
zoonotic emergence, where favorable habitats for wildlife 
often align with viral amplification zones due to increased 
density and contact rates. Integrating these spatial layers is 
therefore critical for anticipating hotspots before outbreaks 
become apparent. 

Key environmental variables influencing wild boar 
distribution included the hf, bio03, bio15 and prec05. These 
findings align with previous research, which suggests that 
wild boars prefer environments with moderate human 
disturbance, dense forest coverage and abundant water 
resources (Barrios-Garcia and Ballari, 2012; Bosch et al., 
2014). Fragmented forests and wetlands provide food and 
shelter for wild boars, promoting population aggregation 
and facilitating disease transmission. From a broader 
ecological perspective, such transitional zones, especially 
forest–agriculture mosaics create ecotones where multiple 
species converge, thereby increasing the probability of 
spillover events. These are often overlooked in classical 
veterinary surveillance, but modeling reveals them as high-
risk interfaces. 

In the risk model for wild boar-borne diseases, high-
risk transmission environments were mainly driven by 
proximity to dis. river, rs, prec07 and hf. These humid and 
low-radiation environments are known to favor the 
persistence and environmental transmission of viruses, 
especially enveloped viruses such as PRV and PCV2, 
which are more stable in water, secretions and moist soil 
(Gillespie et al., 2009). Response curves from this study 
further support these findings, showing that disease 
transmission potential increases in areas with solar 
radiation below 180 W/m2 and July precipitation below 
100 mm. These environmental conditions likely support 
virus survival and spread in densely populated and shaded 
habitats (Nicastro et al., 2021). This indicates a clear 
ecological mechanism whereby abiotic conditions 
indirectly affect transmission potential, reinforcing the 
need for ecological monitoring in zones with persistent 
surface moisture and limited UV exposure conditions that 
promote environmental viability of pathogens. 

The LCP analysis identified three potential ecological 
corridors for virus transmission within the high-risk zones. 
These routes converge in Hulin City and form a critical 
corridor intersection. These corridors are characterized by 
low slope, high forest coverage and strong habitat 
connectivity, which is consistent with findings from other 
studies on movement pathways of forest-dwelling wildlife 
(Carroll et al., 2020; Özcan and Erzin, 2020). Hulin is a 
transitional zone between wildlife habitats and human-
dominated landscapes, where hybrid wild boars are raised 
in semi-free-range systems and share feed, water and even 
enclosures with domestic pigs. This shared interface 
significantly increases the risk of cross-species virus 
transmission (Meng, 2013). The spatial structure identified 
in this region supports the concept of a "wild boar 
ecological hub" proposed by (Bosch et al., 2014) and aligns 
with Özcan's (Özcan and Erzin, 2020) "viral corridor" 
framework from central Turkey. These landscape-level 
corridors not only facilitate animal movement but also 
represent potential routes of pathogen flow, a concept 
increasingly emphasized in landscape epidemiology. 
Mapping and managing these corridors can provide 
preemptive disease containment pathways. 

Serological testing further validated spatial 
predictions. A total of 158 serum samples were collected 
along the three ecological corridors. The overall 
seroprevalence of PRV was 8.86%, while PCV2 was 
detected in 5.06% of samples. Notably, PRV seropositivity 
in Hulin reached 21.05%, highlighting its central role in the 
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regional virus transmission network. For comparison, 
previous studies have reported PCV2 seroprevalence in 
wild boars from Jiangxi and Sichuan provinces ranging 
from 5 to 26.5% (Hu et al., 2022; Yang et al., 2022), 
placing our findings at the lower bound. This may reflect 
the specific context of our study population—hybrid wild 
boars living along forest edges in border areas with lower 
levels of contact and exposure due to semi-free-ranging 
management and sampling focused on high-risk corridors. 

In contrast, the PRV results are more concerning. 
Nationwide surveillance in domestic pig populations has 
shown PRV seroprevalence ranging from 12.36 to 25.04%, 
with levels below 10% reported in low-endemic provinces 
such as Jiangxi, Hunan, and Shaanxi (Zhao et al., 2023). 
Except for Hulin, PRV seroprevalence in our study regions 
fell within this lower range, while Hulin’s rate of 21.05% 
was comparable to areas of moderate PRV endemicity in 
domestic pigs. Internationally, wild boars in Russia’s Far 
East have shown PRV seroprevalence as high as 32.5% 
(Kukushkin et al., 2009), suggesting sustained 
environmental exposure. Although Hulin's rate is slightly 
lower than that, the presence of high ecological 
connectivity and close interaction between wild and 
domestic pigs in shared spaces may create conditions for 
viral amplification. Notably, PRV is known to spread 
efficiently through direct contact, vertical transmission and 
aerosols, especially under closed or semi-enclosed farming 
systems (Chen et al., 2025).  

Despite the strength of the findings, this study has 
some limitations. Serum samples were only collected from 
regions along high-risk corridors and may not represent the 
broader wild boar population in eastern Heilongjiang. 
Additionally, the study only tested PRV and PCV2 and did 
not include key pathogens such as ASFV or CSFV. 
Furthermore, the absence of molecular testing, such as PCR 
or viral genotyping means we cannot confirm whether 
detected strains originated from domestic pigs or wild 
reservoirs. Therefore, the serological data in this study 
primarily serves to validate spatial risk predictions rather 
than provide a full epidemiological profile. This approach 
is consistent with recent international efforts that integrate 
ecological models with field data to support targeted 
disease surveillance (Liu et al., 2024). Such hybrid 
modeling-validation strategies are increasingly used in 
surveillance design under the ‘One Health’ framework, 
especially in regions with limited diagnostic resources but 
pressing wildlife–livestock interface concerns. 

In conclusion, we recommend that Hulin and the 
surrounding ecological corridors be prioritized for future 
monitoring. A buffer zone should be established between 
wildlife activity areas and domestic pig farms to reduce 
contact. Strict management of hybrid wild boar farming 
systems is also necessary, including fencing, segregation 
and restriction of shared water or feed sources. At the 
regional level, cross-border data sharing and joint 
surveillance with neighboring regions in the Russian Far 
East should be strengthened to mitigate the risk of 
transboundary disease transmission. Given the porous 
nature of national borders for wildlife and the ecological 
continuity of habitats spanning China and Russia, the 
identified corridors are likely to represent transboundary 
viral dissemination pathways. In this context, early 
warning systems must transcend administrative boundaries 

and adopt integrated, binational frameworks that combine 
field surveillance with ecological modeling. 
Our findings highlight the need for bilateral coordination in 
surveillance timing, harmonization of diagnostic protocols, 
and data integration to capture wildlife movement and 
pathogen flow across landscapes. Therefore, this study 
provides not only a localized risk map but also a 
transferable approach that can guide joint monitoring, early 
outbreak detection, and coordinated mitigation strategies 
under a shared ‘One Health’ framework. 

The four-stage workflow proposed in this study: 
habitat suitability modeling, risk overlap assessment, 
corridor identification and serological validation. It 
provides a practical and scalable framework for wildlife 
disease epidemiology and early warning systems. More 
broadly, this framework responds to a growing need for 
spatial tools that can inform ‘One Health’ approaches in 
regions where environmental change, wildlife movement 
and livestock expansion intersect. By identifying specific 
ecological corridors and high-risk zones at the human–
wildlife interface, this study contributes to 
transdisciplinary strategies for anticipating and managing 
emerging zoonoses. 
 
Conclusions: This study established a spatial framework 
integrating ecological niche modeling, risk mapping and 
serological validation to identify high-risk zones and 
potential transmission corridors of wild boar-borne viral 
diseases in eastern Heilongjiang, China. The results 
demonstrated a strong spatial overlap between suitable 
wild boar habitats and areas of elevated PRV and PCV2 
seroprevalence, particularly in regions such as Hulin, Jixi, 
and Shuangyashan. Three major ecological corridors were 
identified, converging in Hulin, where hybrid wild boar 
farming coincides with high connectivity amplifying 
transmission risks. The framework presents targeted 
surveillance and cross-border early warning efforts, 
offering practical utility for regional wildlife disease 
preparedness under ‘One Health’ paradigm. 
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