@%/Mﬂ/ %M/w/y &w/mﬂ/

ISSN: 0253-8318 (PRINT), 2074-7764 (ONLINE)
DOI: 10.29261/pakvetj/2025.336

RESEARCH ARTICLE

Spatial Risk Prediction and Serological Validation of Emerging Wild Boar-Borne Diseases in
Eastern Heilongjiang, China

HaoNing Wang'?, YuHan Wang?, YuFei Li?, XiaoDi Wang'2, Xi Chen'?, ShaoPeng Yu!?* and XiaoLong Wang***

"Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and
Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, Heilongjiang Province, People's Republic of China;
2School of Geography and Tourism, Harbin University, Harbin 150086, Heilongjiang Province, People's Republic of
China; 3College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang province, P.
R. China; “*Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Harbin 150040,
Heilongjiang province, P. R. China.

*Corresponding author: ecorisk88@163.com

ARTICLE HISTORY (25-1115) ABSTRACT

Received: November 15, 2025 Wild boars (Sus scrofa) have recently been identified as significant reservoirs and
Revised: December 18,2025 amplifiers of various emerging zoonotic viruses. In northeastern China, the increasing
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Published online: December 24 2025 overlap betwe.en wild boar habitats, hvestock farming areas and human se'ttlements
has raised serious concerns about cross-species transmission and spatial spillover of
wild boar-borne infectious diseases. This study aimed to define the ecologically
suitable distribution of wild boars and associated viruses, identify spatial hotspots of
emerging wild boar-borne disease risk and validate the circulation of these pathogens
within wild boar populations in high-risk areas. The goal was to provide a scientific
basis for surveillance and transboundary prevention in ecologically sensitive regions.
The MaxEnt ecological niche model was applied to predict the suitability of wild
boars and spatial risk of disease emergence. A fuzzy overlay analysis was then
conducted to delineate high-risk zones for wild boar-borne disease emergence. Within
these high-risk zones, least-cost path modeling was used to analyze ecological
connectivity and to identify major transmission routes. Between January 2023 and
December 2024, a total of 158 wild boar serum samples were collected along the
identified transmission routes. ELISA assays were used for serological testing and
antibody prevalence was calculated. The MaxEnt model showed high predictive
accuracy for wild boar distribution (AUC = 0.810, Kappa = 0.816) and for disease
risk mapping (AUC = 0.818, Kappa = 0.803). The total area of high-risk zones for
emerging wild boar-borne diseases reached 12,188.68 km? mainly located in
Mudanjiang, Jixi, and Shuangyashan city. Three major transmission routes were
identified within these regions and all converging in Hulin County. This area is
characterized by semi-free-range hybrid wild boar farming and strong landscape
connectivity, making it a critical node for potential virus spread. Serological testing
confirmed PRV antibodies in 8.86% (14/158) of samples and PCV2 antibodies in
5.06% (8/158). The highest PRV antibody prevalence (21.05%, 95%CI: 9.55-37.32)
was observed in Hulin County, suggesting its central role in local virus maintenance
and transmission. This study proposes a four-stage spatial framework: habitat
modeling, risk mapping, routes identification and serological validation for
comprehensive assessment of wild boar-borne disease risks. It provides both
theoretical and practical value for targeted surveillance and transboundary disease
preparedness in ecologically sensitive regions
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INTRODUCTION have been implicated as key reservoirs of veterinary and

zoonotic viruses. With a rapidly expanding geographic

Wildlife hosts play increasingly prominent roles in the range and frequent contact with domestic livestock and
emergence of viral zoonoses, and wild boars (Sus scrofa) humans, wild boars represent critical nodes in the ecology
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of transboundary diseases. On the global scale, the rapid
growth and spatial expansion of wild boar populations,
driven by climate change and land-use transformation has
created favorable conditions for pathogen persistence,
amplification and cross-border transmission. Over the past
decade, multiple studies have identified wild boars as
asymptomatic or subclinical carriers of viruses such as
African swine fever virus (ASFV), classical swine fever
virus (CSFV), pseudorabies virus (PRV), porcine
circovirus types 2 and 3 (PCV2/3), hepatitis E virus (HEV),
rabies virus (RV) and canine distemper virus (CDV)
(Meng, 2013; Liu et al., 2021; Acosta et al., 2022).

In Europe and Northeast Asia, ASFV is widely
detected in wild boar carcasses, with passive surveillance
indicating much higher positivity in carcasses than in
hunted animals (Denstedt et al., 2021). After ASFV spread
into China in August 2018, genotype II was rapidly
detected across more than 20 provinces (Zhao et al., 2019),
yet serological surveys of ASFV antibodies in Chinese wild
boars remain largely absent. This rapid continental-scale
spread underscores how global disease pressure can
translate into acute regional vulnerability, particularly in
areas where systematic wildlife surveillance remains
insufficient. As such, Heilongjiang provides a critical lens
through which to examine how global drivers of disease
emergence interact with local ecological and surveillance
constraints. By contrast, sero-epidemiological data for
other viruses such as HEV, CDV and RV have been
reported from different regions of China, indicating that
wild boars can sustain substantial levels of viral exposure
and may contribute to the circulation of multiple pathogens
(Wuet al., 2022; Wang et al., 2023; Wang et al., 2024).

Heilongjiang Province, which is in northeastern China
and borders far Eastern Russia contains one of China’s
largest continuous forest ecosystems, providing optimal
conditions for wild boar habitats and pathogen persistence.
Moreover, its position along major transboundary wildlife
movement corridors render the region particularly
susceptible to the introduction and onward spread of
emerging infections. This region acts as a critical
intersection where global disease dynamics, ecological
changes, and wildlife movement converge, making it
especially  vulnerable to  cross-border  pathogen
transmission. Climate change, forest exploitation and
changing land use patterns have contributed to altered wild
boar behavior, including increased migration and
expanding range boundaries (Zhang et al., 2024).
However, no published study has systematically described
the infection status of wild boar-borne diseases in this
region, and the spatial distribution of viral exposure risk
and the role of ecological connectivity in promoting disease
maintenance and spread remain poorly understood.

To fill this significant research gap, we established a
spatially explicit analytical framework that integrates
ecological niche modeling with multi-pathogen risk
prediction (Bosch et al., 2014; Lim et al., 2022; Li et al.,
2022) and field-based serological validation to investigate
the spatial epidemiology of emerging infectious diseases in
wild boar populations of eastern Heilongjiang Province.
This approach enabled the identification of suitable wild
boar habitats, the spatial distribution of viral infection risks
and the ecological connectivity among high-risk zones.
Furthermore, model predictions were validated through
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serological surveys conducted across the study area. By
combining spatial modeling with ground-truth data, this
study provides a comprehensive understanding of disease
dynamics in a transboundary context and offers a scientific
basis for targeted wildlife disease surveillance and
proactive cross-border risk mitigation strategies.

MATERIALS AND METHODS

Study area: The eastern region of Heilongjiang Province
lies between 125.24°-135.07°E and 43.43°-48.48°N. It
covered an area of approximately 136,900Km? and
encompassing 8 cities, including Yichun, Hegang, Jiamusi,
Shuangyashan, Qitahe, Jixi, Mudanjiang and Harbin (Fig.
1). The landscape dominated by plains and mountains is
characterized by temperate forests interspersed with
wetland ecosystems, providing optimal habitats for wild
boars and contributing to pathogen persistence. According
to the provincial catalogue, the region hosts approximately
476 nationally protected wildlife species, including 17
under Class I and 65 under Class II protection with
representative species such as the Amur tiger, sable, wild
boar, red deer and brown bear. This rich biodiversity not
only enhances the ecological value of the region but also
provides a vital foundation for scientific research.

Wild boar and wild boar-borne diseases occurrence
points collection and pre-processing: It has been
combined field investigations with multiple data sources to
obtain comprehensive spatial distribution data from 2010-
2024 on wild boars and wild boar-borne diseases in eastern
Heilongjiang Province. These included published domestic
and international literature, media reports, the Global
Biodiversity Information Facility (https://www.gbif.org/)
and records from local health authorities. Cross-checked
reports from different sources and retained only cases
consistently documented across multiple channels to
ensure data reliability. Underreporting and misdiagnosis
due to symptom overlap challenged data accuracy. So only
laboratory-confirmed cases were included to minimize
uncertainties.

In total, 268 distribution records of wild boars and 109
records of associated emerging infections, such as hepatitis
E virus (HEV), porcine parvovirus (PPV), African swine
fever (ASF), pseudorabies virus (PRV) and porcine
circovirus type 2 (PCV2) were complied. To address spatial
autocorrelation (SAC), the dataset was Geographic
processed and spatial analysis using SDM Toolbox v1.1c
within ArcGIS 10.8 (https://developers.arcgis.com/). A
spatial filtering procedure was applied to maintain a
minimum distance of Skm between occurrence points to
reduce geographic sampling bias. The dataset was
projected to the UTM-WGS-1984 coordinate system, and
the spatial resolution was resampled to 30 arc-seconds to
ensure consistency for subsequent analyses.

Selection and processing of environmental variables: A
total of 67 climate variables were extracted from the
CHELSA v1.2 database (https://chelsa-climate.org/). The
Human Influence Index was obtained from the
Socioeconomic Data and Applications Center (SEDAC)
(http://sedac.ciesin.columbia.edu/wildareas/), while land
use and river network data were sourced from the Institute
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Fig. I: Study area of the eastern region of Heilongjiang Province in China (Data source: The administrative boundary map of eastern Heilongjiang
Province was obtained from the Resource and Environment Science Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/.)

of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences (https://www.resdc.cn).
Slope and elevation data were derived from 100-meter
resolution digital elevation models (DEMs) provided by
the Computer Network Information Center of the Chinese
Academy of Sciences and the Global Science Data Hub
(http://www.gscloud.cn). Surface solar radiation data were
accessed from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/home). All spatial layers were
resampled to a uniform resolution of 30 arc-seconds
(approximately 1km) using ArcGIS to ensure consistency
across datasets.

The variable selection followed the method proposed
by Liu ef al. (2024) to reduce multicollinearity and avoid
overfitting in the modeling process. Environmental
variable preparation and supplementary analysis were
performed with ENMTools version 1.0.5
(http://ydl.oregonstate.edu/pub/cran/web/packages/ENMT
ools/index.html). All environmental layers were imported
into ArcGIS and Pearson correlation analysis was
performed using the multivariate analysis tool. For variable
pairs with a high correlation coefficient (|R| > 0.85), only
the variable with a greater contribution or higher
permutation importance in preliminary MaxEnt runs was
retained. The Variance Inflation Factor (VIF) analysis was
conducted using linear regression to identify
multicollinearity between continuous and categorical
variables. Variables with a VIF greater than 10 were

excluded to ensure that only independent predictors
remained in the final model. This approach ensured that the
final model included only ecologically relevant and non-
redundant predictors.

Modeling building

Parameter optimization for MaxEnt model
construction: MaxEnt version3.4.4
(http://biodiversityinformatics.amnh.org/open_source/M
axEnt/) was used to build the ecological niche models.
Because relying on default parameters can lead to
overfitting and inaccurate predictions (Fernandez and
Morales, 2019; Zhao et al., 2022), we optimized the
feature classes (linear, quadratic, hinge, product and
threshold) and the regularization multiplier (0.1-4,
increment 0.1) using the Kuenm package (Cobos et al.,
2019). Model fit and complexity for each parameter
combination were evaluated using the corrected Akaike
Information Criterion (AICc), the area under the receiver
operating characteristic curve (AUC), the 10% training
omission rate and the minimum training presence
omission rate (Gutierrez and Heming et al., 2018; Ouyang
et al., 2022), and the optimal parameter combination was
identified based on these integrated performance metrics.
Through this systematic optimization process, it has been
significantly enhancing the predictive performance of the
model, ensuring that the results are both scientifically
rigorous and practically applicable.
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Habitat suitability modeling: The de-redundant occurrence
data and the screened environmental variables were
imported into MaxEnt with 80% of the occurrence records
used for training dataset and the remaining 20% for testing
dataset. Model output was set to the logistic format to obtain
the probability of habitat suitability. The jackknife test was
applied to evaluate the contribution and permutation
importance of each environmental variable. The model ran
ten times in subsample mode and the mean prediction from
these runs was used to improve stability and consistency.

Model validation: Model performance was evaluated
using receiver operating characteristic (ROC) curves and
the area under the curve (AUC) (Ahmadi ef al., 2023). The
Kappa statistics were also calculated using the Presence
Absence package in R to further assess model accuracy,
and both indices were interpreted following published
criteria (Dongyang et al., 2023; Shi et al., 2025).

Classification of habitat suitability levels: The predicted
habitat suitability maps were converted to raster format using
Conversion tool in ArcGis 10.8, and the Reclassify tool was
then used to divide the raster data into suitability levels
(Ikhumhen et al., 2020). The classification breakpoints were
determined using three thresholds, namely the training
sensitivity sum (TSS) threshold, the MTSPS threshold and
the true presence threshold (TPT) (Zhao et al., 2025).

Prediction of high-risk areas for wild boar-borne
diseases: The Fuzzy Overlay function within the Spatial
Analyst tool of ArcGIS 10.2 was used to identify high-risk
areas. The habitat suitability map of wild boar and the
distribution risk map of wild boar-borne diseases in eastern
Heilongjiang Province were overlaid by selecting the
“AND” option in Fuzzy Overlay (He et al., 2024). This
approach ensured that an area was classified as high risk
only when all considered environmental and climatic
factors consistently indicated elevated risk.

Connectivity analysis within high-risk areas for wild
boar-borne diseases
Construction of the resistance layer: To construct the
resistance layer for assessing cross-border transmission risk,
vegetation and elevation were selected as key environmental
factors based on movement patterns and foraging habits of
wild boars. Vegetation density influences both food
availability and the level of cover, thereby directly shaping
habitat suitability. Elevation affects movement potential, as
variations in terrain and altitude influence accessibility and
the likelihood of long-distance dispersal.

Each vegetation and elevation grid cell was assigned
a corresponding resistance value and converted into a
classified layer. Vegetation data was already available in
classified form, whereas elevation data were reclassified in
ArcGIS based on known habitat preferences of wild boars.
Resistance values ranging from 1 to 9 were assigned to
different habitat types using an expert-based evaluation,
with lower values (e.g., 1) indicating wild boar resistance
and greater ease of movement, and higher values (e.g., 9)
representing maximum resistance and limited movement
potential (Carroll et al., 2020).

Finally, the vegetation and elevation layers were
integrated using the Weighted Overlay tool in ArcGIS 10.8
(Carroll et al., 2020). The resulting composite resistance layer
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provides a robust spatial basis for analyzing wild boar
movements within high-risk areas and offers valuable support
for subsequent studies on disease transmission dynamics.

Calculation of the LCP: The Least Cost Path (LCP) model
was used to predict potential migration routes of wild boars
within high-risk areas (Ozcan et al., 2020). Land cover and
elevation were reclassified using the Jenks natural breaks
method and used as cost factors, and resistance values from
1 (lowest) to 9 (highest) were assigned according to wild
boar activity preferences and landscape characteristics such
as vegetation density, human infrastructure and topography.
The values represent the relative permeability of different
landscape features to wild boar movement, with lower values
indicating higher permeability and higher values indicating
greater resistance. The resulting cost surface was combined
with outbreak locations using the Grouping Analysis tool in
ArcGIS 10.8 to construct LCPs model (Ozcan and Erzin,
2020), and paths originating far from the border or already
merged into primary routes were excluded.

Serological validation within high-risk areas for wild
boar-borne diseases

Serum collection: From January 2023 to December 2024,
a total of 158 serum samples from hybrid wild boars were
collected along potential high-risk transmission routes 1-3
of wild boar-borne diseases in eastern Heilongjiang
Province. Capture devices were positioned above the wild
boar’s mouths to maintain a natural standing posture, which
facilitated safe and accurate access to the blood vessels.
Blood was drawn from the internal jugular vein using a
20mL syringe, and SmL of whole blood was immediately
processed with a portable centrifuge at 3,000xg for 10
minutes to separate the serum. The serum samples were
stored at —20°C until further analysis.

Serological analysis: Serum samples were analyzed using
a commercial ELISA kit in accordance with the
manufacturer’s protocol. The results were expressed as the
inhibition rate of the optical density (%OD), calculated
using the formula that was % OD =100 x (S-N)/(P-N),
where S denotes the sample reading, N and P are the optical
density values for the negative and positive controls,
respectively. Based on the assay criteria, ELISA results
were interpreted using specific %OD thresholds. For PRV
antibody detection, samples with %OD values below 50
were classified as positive, values between 50 and 60 were
considered doubtful, and values above 60 were classified
as negative. For PCV2 antibody detection, %OD values
>100 indicated a positive result, values between 15 and 100
were considered doubtful, and values <15 were deemed
negative (Wang et al., 2023).

Statistical methods: The serological prevalence was
calculated as the proportion of positive samples relative to
the total number of samples and expressed as a percentage.
The true prevalence for both the overall dataset and spatial
groupings was estimated using the AusVet Epitools
software package (https://epitools.ausvet.com.au/)
(Lishchynskyi et al., 2022). Associations between apparent
prevalence and factors such as location, age, and sex were
assessed using Fisher’s exact test with statistical
significance determined at P<0.05. For all estimates, 95%
confidence intervals were calculated and reported.
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RESULTS

Habitat Suitability Modeling
Determination of occurrence data and environmental
variables: This approach retained the most informative
records while minimizing unnecessary exclusions,
resulting in 213 occurrence points for wild boar and 78
records for wild boar-borne diseases after processing.
Correlation analysis was first used to select 12
environmental variables for modeling wild boar
distribution and 10 variables for modeling wild boar-borne
diseases (Fig. 2). The importance of each variable was then
assessed in the MaxEnt model using the jackknife test and
variables with a contribution rate greater than 5 were
identified as key predictors. The collinearity analysis for
these environmental variables revealed VIF values between
1.395 and 7.487, all of which were below the commonly
accepted threshold of 10, suggesting that there was no
indication of multicollinearity present. Finally, the
variables of hf, biol5, bio3, prec5, alt, and bio7 were
retained as key predictors in the wild boar distribution
model (Table 1); In the modeling of wild boar-borne
diseases, although the contributions of rs, biol6, and
prec07 were all less than 5%, but these indispensability was
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notable as removing these variables significantly reduced
the model’s gain value. Therefore, these variables must be
retained. The collinearity tests for these variables indicated
VIF values between 2.548 and 8.437, all falling below the
threshold of 10, thereby confirming that no
multicollinearity issues were present. Ultimately, hf,
dis.river, bio03, rs, bio16, and prec07 were identified as the
key variables for the modeling of wild boar-borne diseases
(Table 1).

Table I: Analysis of environmental variables contribution rates of wild
boar and wild boar-borne diseases

Permutation VIF
importance (%)
21.7

9.9

10.2

17.7

77

22

52.5

9.6

13.9

Variable Percent
contribution (%)
328
biol5 222
bic03  10.8
prec05 7.1

Alt 6

bio7 59

Hf 737
dis.river 8

wild  boar-borne bio03 5.2
infectious diseases Rs 4.1
biol6 2.5
prec07 2.2

Category

Hf 1.395
2458
7487
4.566
6.35

5.671
6.324
3475
2.548
4.88

8437
5.231

wild boar
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Fig. 2: Correlation heatmap of environmental variables. The figure illustrates the correlation coefficients between various environmental variables. The
color scale ranges from —1 (indicating strong negative correlation and shown in red) to +| (indicating strong positive correlation and shown in blue).
Correlation coefficients near 0 represent weak or no correlation. To avoid overfitting, for pairs of variables with a correlation coefficient |R| > 0.85,
one variable is selected based on its stronger association with the geographical distribution of wild boar and the wild boar-borne diseases. This approach
ensures the robustness and accuracy of the model's predictions by prioritizing the most relevant variables.
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Model evaluation: The model parameter with FC = Iph
and RM = 0.7 was chosen for wild boar distribution
modeling (Fig. 3-A), while the model parameter with FC =

Ipth and RM = 1.2 was selected for modeling the
distribution of wild boar-borne diseases (Fig. 3-B).
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Fig. 3: Scatter plots of optimal MaxEnt models. (A)The candidate MaxEnt
models for wild boar distribution;(B). The candidate MaxEnt models for
wild boar-borne emerging infectious disease distribution. A total of 1,160
candidates MaxEnt models under different combinations of FC and RM
parameters were ran using the Kuenm package based on the distributions
of wild boars and emerging wild boar-borne diseases. The blue triangles
mark the optimal model that met the criteria of statistical significance, an
omission rates below 5% and delta AlCc values less than 2. The red
circles indicate non-significant models and grey circles represent all
candidates models.

Model validation demonstrated strong predictive
performance with an AUC value of 0.810 (SD=0.175) and
Kappa value of 0.816 for the distribution model of wild
boar, indicating that the model prediction results are
reliable (Fig. 4-A); Similarly, the distribution model of
wild boar-borne diseases achieved a high AUC value of
0.818 (SD=0.120) and Kappa value of 0.803, suggesting
that the model performed well and consistent accuracy
(Fig. 4-B).
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Fig. 4: The receiver operating characteristic (ROC) curve assessing the
predictive performance of distribution models. (A) The performance of
wild boar distribution model with an AUC of 0.810; (B) The performance
of wildboar-borne diseases distribution model with an AUC of 0.818.
High AUC values indicate that the model performed well and consistent
accuracy in differentiating between suitable and unsuitable habitats.

Spatial Risk Mapping

Model Prediction: Medium-high suitability areas for wild
boar were concentrated in the central and eastern study
region, mainly in Jixi, Shuangyashan, Jiamusi, Harbin and
Mudanjiang, with smaller patches in Yichun and Hegang.
The total area of high suitability was 14,220.43 km?,
medium suitability 19,411.81 km? and low suitability
92,066.92 km?. The total area of medium-high suitability
accounts for 14.99% of the entire study are (Fig. 5-A); for
wild boar-borne diseases, medium-high risk zones were
mainly in the south and west, particularly in Jixi,
Mudanjiang and Shuangyashan city, with smaller areas in
Jiamusi. The total area of high risk was 12,188.68 km?,
medium risk 7,200.18 km? and low risk 54,150.80 km2.The
total area of medium-high risk zones accounts for 8.64% of
the entire study area (Fig. 5-B).

Spatial distribution maps of habitat suitability are
shown for (A) wild boar and (B)wild boar-borne diseases.
Suitability levels were classified into four categories based
on the TSS training sensitivity threshold, MTSPS threshold
and TPT balance threshold: unsuitable (P<0.1542, gray),
low (0.1542 <P< 0.40, orange), medium (0.40 <P<0.5639,
green) and high (P>0.5639, dark blue). Higher suitability
levels indicate a greater likelihood of wild boar presence
and an elevated risk of disease transmission. Fitting
analysis with occurrence records revealed that most sample
points were located within medium-high suitability areas.

Response Curve Analysis: MaxEnt modelling identified
12 environmental variables influencing the distribution of
wild boar and wild boar-borne diseases. To further
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determine the threshold ranges of these variables in the
areas most suitable for wild boar, we set a high suitability
index of 0.5639 to extract the corresponding variable
ranges, which showed that optimal wild boar distribution
occurs when bio03 <159, hf > 48, prec05 > 56 mm, biol5
< 82, elevation (alt) ranges from 73 to 144 m and bio07 is
between 47.7 and 49.5°C. These thresholds indicate that
wild boars preferentially occupy environments with
relatively  stable thermal conditions, moderate
precipitation and intermediate elevations, which are likely
to reduce physiological stress while ensuring adequate
vegetation productivity and food availability. The
positive association with human footprint values above 48
suggests that wild boars frequently utilize landscapes with
moderate human disturbance, such as forest—farmland
interfaces, where anthropogenic food sources and natural
cover coexist.

A 126°E 128°E 130°E 132°E 134°E

Fig. 5: Predicted habitat suitability for wild boar and risk distribution of
wild boar-borne diseases in eastern region of Heilongjiang Province.
Spatial distribution maps of habitat suitability are shown for (A) wild boar
and (B)wild boar-borne diseases. Suitability levels were classified into four
categories based on the TSS training sensitivity threshold, MTSPS
threshold and TPT balance threshold: unsuitable (P<0.1542, gray), low
(0.1542 <P<0.40, orange), medium (0.40 <P<0.5639, green) and high
(P>0.5639, dark blue). Higher suitability levels indicate a greater
likelihood of wild boar presence and an elevated risk of disease
transmission. Fitting analysis with occurrence records revealed that most
sample points were located within medium-high suitability areas.

The suitability index threshold at 0.3887 was set to
define highly risk transmission regions for wild boar-borne
diseases. The extracted variable ranges indicate that
optimal risk distribution occurs when the bio03<160,
bio16<95 mm, dis. river<0, hf >100, prec07<80 mm and
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rs<175 W/m? (Fig. 6 and Fig. 7). Ecologically, these
conditions may reflect environments where pathogens can
persist more effectively and where contact rates among
wild boars, water sources and human-influenced
landscapes are elevated. Proximity to rivers may facilitate
indirect transmission through contaminated water or shared
aggregation sites, while higher human activity levels may
increase opportunities for spillovers between wild boars
and domestic pigs.

Ecological Connectivity Analysis: The central and eastern
parts of eastern Heilongjiang Province are considered high-
risk areas for emerging infectious diseases carried by wild
boar. These areas include the western part of Jiamusi and
Shuangyashan regions, the central part of Qitaihe and
Mudanjiang region, and most of Jixi. All these areas face a
high-risk outbreak of wild boar-borne emerging infectious
diseases. In contrast, regions such as Yichun, Harbin and
the eastern part of Jiamusi are classified as moderate to
low-risk areas for these diseases (Fig. 8).

In this study, three potential migration routes for wild
boar-borne emerging infectious disease transmission were
identified within the high-risk zones, as shown in Fig. §:
Route 1 passes through Jixian county, Youyi county and
Baoqing county in Shuangyashan city and Hulin county in
Jixi city; Route 2 runs through Qiezihe county in Qitaihe
City, Baoqing county in Shuangyashan city and Hulin
county in Jixi city; Route 3 goes through Mishan county
and Hulin county in Jixi City. These three routes feature
dense vegetation and abundant water, creating optimal
habitats for wild boar and facilitating pathogen spread. As
a result, wild boar-borne emerging infectious diseases are
highly likely to occur along these routes. It is important to
note that all three routes pass through Hulin County in Jixi
city. Hulin county is a major high-risk area for wild boar-
borne diseases in eastern Heilongjiang Province and hosts
many hybrid wild boar farms, where resource sharing
between wild and domestic pigs promotes cross-species
disease transmission.

Three primary transmission routes (Routes 1-3)
identified via least-cost path (LCP) model to predict
potential wild boar-borne emerging infectious disease
transmission corridors within high-risk areas. Suitability
levels were classified into four categories based on the
TSS training sensitivity threshold, MTSPS threshold and
TPT balance threshold: unsuitable (P<0.1542, gray), low
(0.1542 <P<0.40, orange), medium (0.40 <P<0.5639,
green) and high (P>0.5639, dark blue). Higher suitability
levels  indicate  high-risk areas for  disease
transmission. All corridors converge at Hulin County
(Jixi City), a critical transmission zone containing hybrid
wild boar farms.

Serological Validation: A serological survey was
conducted and antibodies of PRV and PCV2 was detected
in three major transmission routes within the high-risk
areas in the eastern part of Heilongjiang Province, China.
The total seroprevalence of PRV was 8.86% (14/158, 95%
CI 4.93-14.42) and the estimated overall true prevalence
was 8.83% (95% CI 4.89-14.97) (Table 2). For PCV2, the
total seroprevalence was 5.06% (8/158, 95% CI 2.21-9.73)
and the estimated overall true prevalence was 4.57% (95%
CI 1.78-9.74) (Table 3).
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Fig. 6: Response curves of key environmental variables influencing wild boar habitat suitability based on the MaxEnt model. These patterns indicate the
optimal environmental variables ranges for wild boar habitat suitability. The black lines represent the mean response curves generated from 10 replicates
of the MaxEnt model,and the light blue shading indicates the range of variation across replicates. (A) Isothermality index (bio03): The suitability probability
increases sharply when bio03 exceeds 160 and peaks at 171, then declines gradually; (B) Human activity influence index (hf): The suitability probability
rises rapidly when hf exceeds 28 and reaching a maximum at 91 before stabilizing; (C) Precipitation in May (prec05): The suitability probability increases
steeply and peaking at 56 mm, then remains stable; (D) Precipitation seasonality coefficient (biol5), (E) elevation (alt) and (F) annual temperature range
(bio07) all show an increase in suitability to respective peaks of 77,82 m,and 49.3 °C then followed by a decline.

Table 2: Seroprevalence of PRV antibodies in hybrid wild boars from three potential high-risk transmission routes in the eastern region of
Heilongjiang Province, China

Variable City County Sample size (n) Sero-positive (n) Apparent prevalence (95%CIl) True prevalence (95%CIl) Fisher’s exact p
City Shuangyashan Jixian =~ 27 0 - - 0.385
Youyi 19 2 10.53% (1.3,33.14) 10.7% (2.18,34.15)
Baoqing 31 2 6.45% (0.79,21.42) 6.13% (0.88,22.16)
Jixi Hulin 38 8 21.05% (9.55,37.32) 22.53% (11.32,39.71)
Mishan |5 2 13.33% (1.66,40.46) 13.86% (3.07,41.44)
Qitaihe Qitaihe 17 0 - -
Qiezihe 11 0 - -
Gender Female 127 10 6.3% (2.76,12.03) 5.95% (2.5,12.29) 0.478
Male 31 4 19.35% (7.45,37.47) 20.62% (9.2,39.64)
Age (Mouths) >12 69 3 4.35% (0.91,12.18) 3.76% (0.55,12.38) 0.095
<12 89 I 12.36% (6.33,21.04) 12.76% (6.79,22.24)
Total 158 14 8.86% (4.93,14.42) 8.83% (4.89,14.97)
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Table 3: Seroprevalence of PCV2 antibodies in hybrid wild boars from three potential high-risk transmission routes in the eastern region of
Heilongjiang Province, China

Variable City County Sample size (n) Sero-positive (n) Apparent prevalence (95%Cl) True prevalence (95%Cl) Fisher’s exact p
City Shuangyashan Jixian 27 0 - - 0.381
Youyi 19 0 - -
Baoging 31 0 - -
Jixi Hulin 38 3 7.89% (1.66,21.38) 7.75% (1.93,22.25)
Mishan 15 0 - -
Qitaihe Qitaihe 17 3 17.65% (3.8,43.43) 18.7% (5.83,44.98)
Qiezihe I 2 18.18% (2.28,51.78) 19.31% (4.65,52.47)
Gender Female 127 6 4.72% (1.75,10) 4.18% (1.33,10.03) 0.656
Male 31 2 6.45% (0.79,21.42) 6.13% (0.88,22.16)
Age (Mouths) >12 69 2 2.9% (0.35,10.08) 2.13% (0.23,10.07) 0.467
<12 89 6 6.74% (2.51,14.1) 6.45% (2.39,14.54)
Total 158 8 5.06% (2.21,9.73) 4.57% (1.78,9.74)
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Fig. 7: Response curves of key environmental variables affects the predicted risk transmission areas of wild boar-borne diseases generated using the
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Fig. 8: Potential transmission routes and habitat suitability for wild boar-
borne emerging infectious diseases in high-risk areas of eastern
Heilongjiang Province. Three primary transmission routes (Routes |-3)
identified via least-cost path (LCP) model to predict potential wild boar-
borne emerging infectious disease transmission corridors within high-risk
areas. Suitability levels were classified into four categories based on the
TSS training sensitivity threshold, MTSPS threshold and TPT balance
threshold: unsuitable (P<0.1542, gray), low (0.1542 <P<0.40, orange),
medium (0.40 <P< 0.5639, green) and high (P>0.5639, dark blue). Higher
suitability levels indicate high-risk areas for disease transmission.All
corridors converge at Hulin County (Jixi City), a critical transmission zone
containing hybrid wild boar farms.

No PRV was detected in wild boars from Jixian County,
Qitaihe city and Qiezihe county. However, PRV was detected
in Youyi county, Baoging county, Hulin county and Mishan
county, with the highest seroprevalence observed in Hulin
county at 21.05%; For PCV2, no cases were found in the
three counties of Shuangyashan and Mishan county in Jixi,
but positive results were detected in Hulin county, Qiezihe
county and Qitaihe city, with the highest detection rate of
18.18% found in Qiezihe County. No significant associations
were found between the occurrence of PRV and PCV2 and
the city (P=0.385/0.381), gender (P=0.478/0.656), or age
(P=0.095/0.467) (Tables 2 and Table 3)

DISCUSSION

This study integrated ecological niche modeling
(MaxEnt), spatial risk prediction and field-based
serological validation to develop a spatial framework for
identifying high-risk areas and potential transmission
corridors of wild boar-borne viral diseases in eastern
Heilongjiang Province, China. The MaxEnt model showed
strong performance in predicting both wild boar habitat
suitability and wild boar-borne disease risk with AUC
values of 0.810 and 0.818, respectively. These results are
consistent with the widespread use of MaxEnt in wildlife
disease ecology (Lim ef al., 2022; Diaz-Cao et al., 2023).
Areas with high habitat suitability particularly around Jixi
and Shuangyashan, largely overlapped with areas of
elevated disease risk. This spatial overlap suggests a strong
correlation between ecological suitability and virus
exposure. Such convergence between host habitat and
pathogen risk reflects a well-documented pattern in
zoonotic emergence, where favorable habitats for wildlife
often align with viral amplification zones due to increased
density and contact rates. Integrating these spatial layers is
therefore critical for anticipating hotspots before outbreaks
become apparent.
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Key environmental variables influencing wild boar
distribution included the hf, bio03, bio15 and prec05. These
findings align with previous research, which suggests that
wild boars prefer environments with moderate human
disturbance, dense forest coverage and abundant water
resources (Barrios-Garcia and Ballari, 2012; Bosch et al.,
2014). Fragmented forests and wetlands provide food and
shelter for wild boars, promoting population aggregation
and facilitating disease transmission. From a broader
ecological perspective, such transitional zones, especially
forest—agriculture mosaics create ecotones where multiple
species converge, thereby increasing the probability of
spillover events. These are often overlooked in classical
veterinary surveillance, but modeling reveals them as high-
risk interfaces.

In the risk model for wild boar-borne diseases, high-
risk transmission environments were mainly driven by
proximity to dis. river, rs, prec07 and hf. These humid and
low-radiation environments are known to favor the
persistence and environmental transmission of viruses,
especially enveloped viruses such as PRV and PCV2,
which are more stable in water, secretions and moist soil
(Gillespie et al., 2009). Response curves from this study
further support these findings, showing that disease
transmission potential increases in areas with solar
radiation below 180 W/m2 and July precipitation below
100 mm. These environmental conditions likely support
virus survival and spread in densely populated and shaded
habitats (Nicastro et al., 2021). This indicates a clear
ecological mechanism whereby abiotic conditions
indirectly affect transmission potential, reinforcing the
need for ecological monitoring in zones with persistent
surface moisture and limited UV exposure conditions that
promote environmental viability of pathogens.

The LCP analysis identified three potential ecological
corridors for virus transmission within the high-risk zones.
These routes converge in Hulin City and form a critical
corridor intersection. These corridors are characterized by
low slope, high forest coverage and strong habitat
connectivity, which is consistent with findings from other
studies on movement pathways of forest-dwelling wildlife
(Carroll et al., 2020; Ozcan and Erzin, 2020). Hulin is a
transitional zone between wildlife habitats and human-
dominated landscapes, where hybrid wild boars are raised
in semi-free-range systems and share feed, water and even
enclosures with domestic pigs. This shared interface
significantly increases the risk of cross-species virus
transmission (Meng, 2013). The spatial structure identified
in this region supports the concept of a "wild boar
ecological hub" proposed by (Bosch et al., 2014) and aligns
with Ozcan's (Ozcan and Erzin, 2020) "viral corridor"
framework from central Turkey. These landscape-level
corridors not only facilitate animal movement but also
represent potential routes of pathogen flow, a concept
increasingly emphasized in landscape epidemiology.
Mapping and managing these corridors can provide
preemptive disease containment pathways.

Serological testing further validated spatial
predictions. A total of 158 serum samples were collected
along the three ecological corridors. The overall
seroprevalence of PRV was 8.86%, while PCV2 was
detected in 5.06% of samples. Notably, PRV seropositivity
in Hulin reached 21.05%, highlighting its central role in the
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regional virus transmission network. For comparison,
previous studies have reported PCV2 seroprevalence in
wild boars from Jiangxi and Sichuan provinces ranging
from 5 to 26.5% (Hu et al, 2022; Yang et al., 2022),
placing our findings at the lower bound. This may reflect
the specific context of our study population—hybrid wild
boars living along forest edges in border areas with lower
levels of contact and exposure due to semi-free-ranging
management and sampling focused on high-risk corridors.

In contrast, the PRV results are more concerning.
Nationwide surveillance in domestic pig populations has
shown PRV seroprevalence ranging from 12.36 to 25.04%,
with levels below 10% reported in low-endemic provinces
such as Jiangxi, Hunan, and Shaanxi (Zhao et al., 2023).
Except for Hulin, PRV seroprevalence in our study regions
fell within this lower range, while Hulin’s rate of 21.05%
was comparable to areas of moderate PRV endemicity in
domestic pigs. Internationally, wild boars in Russia’s Far
East have shown PRV seroprevalence as high as 32.5%
(Kukushkin et al, 2009), suggesting sustained
environmental exposure. Although Hulin's rate is slightly
lower than that, the presence of high ecological
connectivity and close interaction between wild and
domestic pigs in shared spaces may create conditions for
viral amplification. Notably, PRV is known to spread
efficiently through direct contact, vertical transmission and
aerosols, especially under closed or semi-enclosed farming
systems (Chen et al., 2025).

Despite the strength of the findings, this study has
some limitations. Serum samples were only collected from
regions along high-risk corridors and may not represent the
broader wild boar population in eastern Heilongjiang.
Additionally, the study only tested PRV and PCV2 and did
not include key pathogens such as ASFV or CSFV.
Furthermore, the absence of molecular testing, such as PCR
or viral genotyping means we cannot confirm whether
detected strains originated from domestic pigs or wild
reservoirs. Therefore, the serological data in this study
primarily serves to validate spatial risk predictions rather
than provide a full epidemiological profile. This approach
is consistent with recent international efforts that integrate
ecological models with field data to support targeted
disease surveillance (Liu et al., 2024). Such hybrid
modeling-validation strategies are increasingly used in
surveillance design under the ‘One Health® framework,
especially in regions with limited diagnostic resources but
pressing wildlife-livestock interface concerns.

In conclusion, we recommend that Hulin and the
surrounding ecological corridors be prioritized for future
monitoring. A buffer zone should be established between
wildlife activity areas and domestic pig farms to reduce
contact. Strict management of hybrid wild boar farming
systems is also necessary, including fencing, segregation
and restriction of shared water or feed sources. At the
regional level, cross-border data sharing and joint
surveillance with neighboring regions in the Russian Far
East should be strengthened to mitigate the risk of
transboundary disease transmission. Given the porous
nature of national borders for wildlife and the ecological
continuity of habitats spanning China and Russia, the
identified corridors are likely to represent transboundary
viral dissemination pathways. In this context, early
warning systems must transcend administrative boundaries
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and adopt integrated, binational frameworks that combine
field  surveillance =~ with  ecological =~ modeling.
Our findings highlight the need for bilateral coordination in
surveillance timing, harmonization of diagnostic protocols,
and data integration to capture wildlife movement and
pathogen flow across landscapes. Therefore, this study
provides not only a localized risk map but also a
transferable approach that can guide joint monitoring, early
outbreak detection, and coordinated mitigation strategies
under a shared ‘One Health’ framework.

The four-stage workflow proposed in this study:
habitat suitability modeling, risk overlap assessment,
corridor identification and serological validation. It
provides a practical and scalable framework for wildlife
disease epidemiology and early warning systems. More
broadly, this framework responds to a growing need for
spatial tools that can inform ‘One Health’ approaches in
regions where environmental change, wildlife movement
and livestock expansion intersect. By identifying specific
ecological corridors and high-risk zones at the human—
wildlife  interface, this study contributes to
transdisciplinary strategies for anticipating and managing
emerging zoonoses.

Conclusions: This study established a spatial framework
integrating ecological niche modeling, risk mapping and
serological validation to identify high-risk zones and
potential transmission corridors of wild boar-borne viral
diseases in eastern Heilongjiang, China. The results
demonstrated a strong spatial overlap between suitable
wild boar habitats and areas of elevated PRV and PCV2
seroprevalence, particularly in regions such as Hulin, Jixi,
and Shuangyashan. Three major ecological corridors were
identified, converging in Hulin, where hybrid wild boar
farming coincides with high connectivity amplifying
transmission risks. The framework presents targeted
surveillance and cross-border early warning efforts,
offering practical utility for regional wildlife disease
preparedness under ‘One Health’ paradigm.
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