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 Cancer is a deadly disease and ranks as the second leading cause of death globally, 

which predominantly arises as a result of continuous exposure of human beings to 

carcinogenic agents and environmental contaminants. Natural compounds can 

potentially treat up to 60% of cancer cases. Therefore, this study investigated the 

anticancer and antioxidant activities of pomegranate peel extracts, which were 

prepared using a novel hybrid ultrasound-microwave assisted extraction (HUME) 

method. The HUME demonstrated significant improvements in extraction yield and 

polyphenol contents compared to conventional methods. The anticancer activity of 

pomegranate peel extract (PPE) was evaluated against HeLa, colon, and HepG2 cell 

lines and in vivo colon cancer in albino mice. The PPE demonstrated potent 

antioxidant activity, with DPPH and ABTS radical scavenging capacities of 91% 

and 95%, respectively. This potent activity was attributed to its high levels of 

phenolic acids (181 mg GAE/g) and flavonoids (35 mg QE/g). The secondary 

metabolites of PPE were detected by MS/MS using negative and positive ionization 

modes; the most abundant detected compounds were 4-hydroxycoumarin, p-

coumaric, and gallic acid. A 40 Albino mice were randomly assigned to four 

experimental groups: a control group, a pathogen-induced cancer group, a 5-

fluorouracil-treated group, and a group administered pomegranate peel extract 

(PPE). Albino mice treated with the PPE showed significant (P<0.05) tumor volume 

reduction and tumor growth inhibition compared to the diseased group. 

Pomegranate peel extract (PPE) demonstrated in vivo anticancer activity against 

bacterial pathogen-induced colon cancer. This was evident by significantly (P<0.05) 

downregulated B-cell leukemia/lymphoma 2 (BCL2) and Hypoxia-inducible factor 

1-alpha (HIF1-α) level in the serum by 50% and 30%, respectively, in the PPE-

treated group compared to the infected control. Concomitantly, PPE treatment 

improved histopathological features in the colon tissue, where the glandular 

structures remained intact and normal histological structure. These findings suggest 

that pomegranate peel extracts obtained by HUME possess potent anticancer and 

antioxidant activities. Further research is warranted to elucidate the underlying 

mechanisms and explore their potential as promising therapeutic agents for cancer 

treatment. 
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INTRODUCTION 

 

Cancer is a significant public health issue and the 

leading cause of death globally (Ferlay et al., 2020). It 

remains the second leading cause of morbidity and mortality 

after cardiovascular disease and microbial infections around 

the globe, and predominantly, all cancer cases have their 

roots in lifestyle and environment (Gaidai et al., 2023; Guo et 

al., 2024). Recognizing the high mortality and poor recovery 

rates linked to current chemotherapies, mainly because of 

their adverse effects (Anand et al., 2023), there remains a 

critical need for innovative therapeutic approaches that can 

simultaneously improve treatment effectiveness and reduce 

toxicity (Sung et al., 2021). 
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Conventional cancer treatments often fail to 

distinguish between malignant and healthy cells (Kaur et 

al., 2023). Anticancer therapies should selectively target 

cancerous cells with minimal impact on surrounding 

healthy tissues (Liu et al., 2024). This challenge has 

accelerated the search for new anticancer drugs, 

particularly those derived from plants, which tend to have 

fewer side effects when used to treat tumors (El-Saadony 

et al., 2023; 2025). Around 35,000 phytochemicals from 

terrestrial and aquatic environments have been identified 

as potential complements to traditional cancer therapies 

(Lewandowska et al., 2022).  

Various plant-derived metabolites, including phenols, 

terpenoids, saponins, and alkaloids, have demonstrated 

chemoprotective effects against different types of cancer 

cells, with the capacity to trigger either cell cycle arrest or 

apoptosis (Mueed et al., 2024; Alharbi et al., 2024). These 

bioactive compounds work through multiple mechanisms, 

such as promoting apoptosis and reducing DNA damage 

induced by oxidative stress by disrupting cellular 

checkpoints or decreasing levels of antiapoptotic proteins 

(Al-Quwaie et al., 2023). The therapeutic value of natural 

compounds has gained increasing recognition, especially 

the bioactive components found in Punica granatum 

(Fakudze et al., 2022). 

Pomegranate fruits Punica granatum L. is a family 

Lythraceae member grown in tropical and subtropical 

temperate zones on evergreen, deciduous small trees or 

shrubs (Das et al., 2025). The pomegranate is an old plant 

cultivated in the Mediterranean, Middle East, and South 

Asia for several ages. Pomegranate peels, which constitute 

half the fruit weight, are often considered waste but are a 

rich source of phytochemicals (Fahmy and Farag, 2022). 

The pomegranate peel possesses a higher concentration of 

antioxidants than the juice, making it a valuable source of 

bioactive compounds. It contains proteins, 

polysaccharides, minerals, and phenolic substances 

(Teniente et al., 2023). Furthermore, pomegranate peel 

extract (PPE) demonstrates diverse biological activities, 

encompassing anticancer, anti-inflammatory, 

neuroprotective, antiviral, and antibacterial effects (Xiang 

et al., 2022). 

Inflammation develops chronic diseases initiated by 

prolonged oxidative stress, which occurs when an 

imbalance between harmful reactive oxygen species (ROS) 

and the body's defense mechanisms (Leyane et al., 2022). 
This oxidative stress can then activate the NF-κB pathway, 

a central controller of inflammation (Saaoud et al., 2024). 

This activation leads to increased expression of 

cyclooxygenase-2 (COX-2), the enzyme involved in the 

production of proinflammatory prostaglandins, and the 

induction of inducible nitric oxide synthase (iNOS), which 

generates nitric oxide (NO), a signaling molecule with 

complex roles in inflammation (Coutinho et al., 2024). 

Furthermore, inflammation can arise from invading 

pathogens, i.e., Fusobacterium nucleatum, Bacteroides 

fragilis, and certain species of Escherichia coli (Quaglio 

et al., 2022). These invaders trigger an immune response 

characterized by the upregulation of proinflammatory 

cytokines, such as tumor necrosis factor-alpha (TNF-α), 

interleukin-6 (IL-6), and interleukin-8 (IL-8) (Cao et al., 

2024). Simultaneously, the production of chemokines like 

CCL2 and CXCL8, which attract immune cells to the site 

of inflammation, is also increased. Conversely, the levels 

of anti-inflammatory cytokines, like interleukin-10 (IL-

10), which help to dampen the inflammatory response, are 

often reduced (Song et al., 2024). 

Chronic inflammation (CI), a persistent and long-

lasting inflammatory state, has been strongly implicated in 

the pathogenesis of a wide range of debilitating diseases 

(Wang et al., 2021). These include atherosclerosis, the 

underlying cause of cardiovascular diseases (CVD); 

inflammatory bowel disease (IBD), a group of disorders 

affecting the digestive system; kidney disease; and 

diabetes Mellitus (Wu et al., 2024). The global impact of 

CI is staggering, where recent studies suggested that it is a 

leading cause of death worldwide, with approximately 

half of all mortalities attributed to inflammation-related 

conditions and autoimmune diseases (Yin et al., 2024). 

Chronic inflammation can compromise the integrity 

of this crucial barrier, leading to increased permeability, a 

condition often referred to as "leaky gut" (Paray et al., 

2020). This breach allows macromolecules, including 

pathogens, exotoxins, and undigested fats, to cross from 

the intestinal lumen into the underlying tissues (Fasano, 

2020). This increased permeability and the subsequent 

influx of foreign substances can contribute significantly to 

the development of colorectal cancer, particularly in 

individuals with pre-existing inflammatory bowel disease 

(Escalante et al., 2024). Therefore, effective management 

of inflammation is paramount in preventing colorectal 

cancer, especially in the vulnerable IBD patient 

population. 

While extensive research in vitro and in vivo has 

explored the potential therapeutic benefits of various 

compounds, including PPE, the specific in vivo cytotoxic 

effects of PPE on colon cancer and the precise molecular 

mechanisms by which it exerts its effects remain fully 

elucidated (Teniente et al., 2023). Given the growing 

interest in utilizing industrial by-products such as 

pomegranate peel, this study uses advanced 

chromatographic techniques to examine its ethanolic 

extract's chemical composition and bioactivity. The study 

also evaluates the extract's antioxidant and cytotoxic 

effects on human cervical cancer cells (HeLa), colon 

cancer cells (Caco-2), and liver cancer cell (HepG2) lines. 

Then, the anticancer potential of pomegranate peel extract 

(PPE) on pathogen-induced colon cancer in albino mice 

will be tested by evaluating biochemical, metabolomics, 

and histological characteristics. 

 

MATERIALS AND METHODS 

 

Plant material and extraction process: Mature Punica 

granatum fruits were obtained from local markets, then 

ground to prepare pomegranate peel powder. The peels 

were manually separated, dried at 40°C, and finely ground 

using an electric blender (LM1A0, Moulinex, France). 

The resulting fine powder was stored at -20°C in a freezer 

for future use. The extraction process involved mixing 10 

g of the powder with 70 % ethanol and agitating it on an 

orbital shaker for 24h. The mixture was then filtered 

under vacuum and concentrated using a rotary evaporator. 

Subsequently, it was frozen and lyophilized using a 

lyophilizer at -80 °C under pressure for 72h (Khodadadi et 

al., 2021). 
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Phytochemical analysis of bioactive compounds: The 

phenolic compounds in PPE were detected using High-

Performance Liquid Chromatography with diode-array 

detection (HPLC-DAD). The separation process was 

conducted using an Inertsil ODS-3 guard column (150 

mm × 4.0 mm, film thickness 4 μm) at a temperature of 

35°C. The extracts were dissolved to create stock 

solutions (8 mg/mL) in a methanol and water mixture 

(80/20, v/v)). The samples were pre-filtered using an 

Agilent 0.45 μm PTFE filter. The mobile phase consisted 

of a solution containing 0.5 % acetic acid in aqueous (A) 

and methanolic (B) solvents. The gradient elution method 

varied the solvent composition as follows: 0 to 20 % B (0 

- 0.01 min), 20 to 60 % B (0.01 - 0.02 min), 60 to 80 % B 

(0.02 - 15.2 min), and 100 % B (15.2 - 30 min). Between 

30 and 35 min, the composition shifted from 100 % B to 

10 % B, and from 35 to 40 min, it further changed from 

10 % B to 0 % B. After injecting the sample, the phenolic 

compounds were identified using a diode array detector 

(DAD) set to a wavelength range of 200 - 600 nm (Tokul-

Ölmez et al., 2020). 

 

Characterization of PPE using Tandem mass 

spectrometry (MS/MS): The pomegranate peel extract 

was characterized qualitatively using a Shimadzu 8040 

ultra-high sensitivity system as previously described 

(Belguidoum et al., 2024). The MS/MS analysis was 

performed with electrospray ionization (ESI) under 

specific parameters. 

 

Determination of antioxidant activity: The antioxidant 

activity of PPE was tested against DPPH (2,2- diphenyl-1-

picrylhydrazyl, 24 µM) and ABTS (2,2'-azino- bis(3-

ethylbenzothiazoline-6-sulfonic acid) radicals methods 

using JENEWAY spectrophotometer (UK) with Amari et 

al., (2014); Altarawneh et al., (2022). In the DPPH assay, 

a 50 µL sample was mixed with a 0.004 % DPPH solution 

and incubated in the dark for 30 min, after which 

absorbance was measured at 517 nm. A working solution 

was prepared for the ABTS assay by reacting 7 mM 

ABTS with 2.45 mM potassium persulfate and adjusting it 

with ethanol. A 20 µL sample was then combined with 2 

mL of this solution and incubated in the dark at room 

temperature for 6 min. Absorbance was measured at 517 

nm for DPPH and 734 nm for ABTS. Trolox was used as 

a reference standard. The radical scavenging activity (S) 

was calculated using Eq 1.  

 
 Where Abs sample is the absorbance of the solution with 

the sample, and Abs control is the absorbance of the 

solution in the absence of the sample. 

 

Cytotoxic assay: The cytotoxicity of P. granatum peel 

extract was tested on human HeLa, Caco-2, and HepG2 

cell lines (ATCC, USA). The cancerous cells were 

cultured in Dulbecco's Modified Eagle Medium (DMEM, 

Oxiod, UK) supplemented with 20 ng/mL epidermal 

growth factor, 500 ng/mL hydrocortisone, 0.01 ng/mL 

insulin, 5% FBS and 1% Pen/Strep. The cells were 

maintained in standard conditions (humidified atmosphere 

with 5% CO2 and 37 °C).  The MTT assay (3-(4,5-

dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide) 

was used to measure the cell viability by measuring the 

absorbance of the reaction mixture on 590 nm after 24 h 

of treatment with varying PPE extract concentrations 

(Zhang et al., 2023). 

 

Animal design model: Albino/c male mice were selected 

for this study. BALB/c mice were albino and had pink 

eyes and white hair. The "c" was added at F26 by Snell in 

1932; it refers to coat color (Wang et al., 2015). Forty 

BALB/c mice (6-8 weeks old) were bought and housed 

under 12h day/night cycles. All mice in the four groups 

had free access to water and a high-fat diet throughout the 

experimental period. These mice were maintained at 23°C 

with relative humidity (50%) and moisture (10 %) 

(Ludgero-Correia et al., 2012). The mice were separated 

into four groups (ten per group): group one was orally 

administered 0.5 mL saline as a control. Induction of 

colon tumor using bacterial pathogens supported with 

protein and lipid-rich saturated fatty acid diet for groups 

2, 3 and 4. Pathogenic bacteria, Escherichia coli and 

Klebsiella sp., were used at 106 CFU (colony-forming 

unit) in a single dose as the starting point of infection. 

Treatment was carried out for groups 3 & 4 with standard 

drug and PPE, respectively. Treatment of group 3 was 

performed via intraperitoneal administration of 5-

fluorouracil (25 mg/kg) every 3 days for 2 weeks. Group 4 

administered PPE (100 mg/kg). 

 

Biochemical analysis of mice serum: At the end of the 

experiments, the animals were slaughtered, and blood 

samples were collected and centrifuged (3000 rpm for 10 

min). Sera were isolated and then stored at -20°C until 

analysis. Using ELISA kits, the content of apoptosis key 

regulators, i.e., B cell lymphoma gene 2 (BCL2) and 

hypoxia-inducible factor 1 -α (HIF1-α) proteins 

(Biosource International Inc., California, USA) were 

investigated following the manufacturer's instructions 

(Gür et al., 2011). 

 

Histopathological examination: In parallel, animal colons 

were collected immediately from all mice after euthanasia 

using light ether. After being cleaned with a saline solution, 

the colon was first fixed in 10%; then, paraffin sections of 5 

μm thickness were prepared and stained with hematoxylin 

and eosin (H & E). Paraffin slices of 5 μm thickness were 

prepared for microscopic examination and stained with H 

& E (Bastaki et al., 2016). 

 

Serum metabolomics analysis using GC-MS analysis: 

The serum metabolites of the studied groups were profiled 

using gas chromatography (Thermo Scientific Corp., 

USA) coupled with a thermal mass spectrometer detector. 

Metabolites separation were achieved under conditions 

described in previous work (Hassan et al., 2020; Ammar 

et al., 2021). The gas chromatography-mass spectrometry 

(GC-MS) data were cleaned, deconvoluted, and aligned 

using the MS-DIAL interface (Zhang et al., 2020).  

 

Statistical analysis: All experiments were done in 

triplicate and analyzed with a T-test and one-way 

ANOVA (Dunnett) using GraphPad Prism (Version 9) 

and Microsoft Excel spreadsheet. P-value ≤ 0.05 was 

considered significant. 
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RESULTS  

 

Active compounds profile of PPE: The analysis of P. 

granatum peels revealed a significant concentration of 

phenolic compounds. Pyrocatechol was identified as the 

predominant compound, with a concentration of 19.5 

mg/g (Table 1), followed by ellagic acid (5.2 mg/g), 

epicatechin, and fisetin at 2.2 mg/g and 1.9 mg/g, 

respectively. 

 
Table 1: Phenolic composition of PPE by HPLC-DAD (mg/g) 

Phenolic compound Retention time (min) PPE (mg/g) 

Fumaric acid 14.00 0.065±0.001 
Protocatechic acid 24.5 0.01±0.001 
4-oh-benzoic acid 30.9 0.09±0.01 

Vanillic acid 34.5 0.32±0.02 
Caffeic acid 35.3 0.02±0.01 
Ellagic acid 50.11 5.2±0.09 
p-Coumaric acid 40.77 0.09±0.002 
Pyrocatechol 24.6 19.5±0.05 
Theophylline 29.5 0.02±0.00 
Vanillin 36.90 0.01±0.001 
Hesperidin 47.31 0.02±0.05 
Rutin 47.6 0.61±0.02 
Fisetin 51.33 1.9±0.04 
Quercetin 55.23 0.01±0.02 
Curcumin 72.71 0.23±0.01 
2,4-dihydroxybenz 41.21 0.01±0.001 
Prophylgallate 46.92 0.02±0.002 

n=3, data are presented mean±SE. 
 

Characterization of PPE Using LC‑MS/MS: Table 2 

provides detailed information on the compounds. Three 

phenolic acids were identified: 4-hydroxycoumarin, p-

coumaric, and gallic acids. Additionally, the analysis 

detected several phytoconstituents, such as flavonoids 

(naringenin, myricetin, quercetin, and rutin) and other 

phenolic compounds (vanillin, beta-carotene, folic acid, 

and maleic acid). Most of the compounds were detected in 

positive ionization modes. 
 
Table 2: The compounds identified in the PPE using LC/MS-MS results 

Compound 
Ionization  

mode (m/z) 
Precursor 

ion 
Product ion PPE 

Phenolic acids 

p-Coumaric acid (MH)+ 166.2 58.9 + 
4-Hydroxy 

coumarin acid 
(MH)- 161.1 117.6 + 

Gallic acid (MH)- 169.2 124.8 + 
Folic acid (MH)+ 443.3 59.2, 25.6, 324.1 + 
Maleic acid (MH)+ 118.3 85.9 + 

Flavonoids 

Naringenin (MH)+ 271.22 192.1, 231.5 + 
Myricetin (MH)+ 335.9 45.6, 71.6, 239.2 + 
Quercetin (MH)+ 305.22 84.9 + 
Rutin (MH)+ 610.55 72.8, 281.9 + 
Vanillin (MH)+ 152.36 93.6     + 
Beta-carotene (MH)+ 541.33 24.1, 201.33 + 

 

Antioxidant potential of PPE: Table 3 shows the 

scavenging activity of PPE against DPPH and ABTS free 

radicals, where PPE (200 µg/ml) scavenged 91% and 95% 

of free radicals, respectively. Furthermore, The IC50 of 

PPE was 120 and 85 µg/ml against DPPH and ABTS free 

radicals because of the considerable content of phenolic 

and flavonoids (181 and 35 mg/g). 
 

Anticancer activity of PPE: Figure 1A-F shows the 

potent cytotoxic activity of PPE against three cancer cell 

lines (Hela, liver, and colon cancer cell lines). As the 

concentration of the extract is increased, there is a 

significant inhibition in cell viability, particularly at doses 

of 75 and 100 µg/mL. The IC50 value against all cancer 

cells was 75 µg/mL, which indicates the extract's 

effectiveness in reducing the cancer cell population by 50 

%. PPE at 100 µg/mL significantly (P<0.05) reduced the 

cancer cell viability by 23, 17, and 20 % against Hela, 

liver, and colon cancer cell lines, respectively (Figure 

1G). 
 
Table 3: Antioxidant potential of PPE  

Antioxidant poteintal  Value 

Total phenolic (mg/g) 181±2.3 
Total flavaniods (mg/g) 35±0.2 
DPPH scavenging (%) 91±1.1 

ABTS scavenging (%) 95±1.8 
IC50 against DPPH (µg/ml) 120±5.2 

IC50 against ABTS (µg/ml) 85±1.6 

n=3, data are presented mean±SE 

 

Effects of PPE on BCL2 and HIF1-α in mice sera with 

colon cancer: Induction of colon cancer by pathogenic 

bacteria caused significantly elevated levels of BCL2 and 

HIF1- α compared to the control group, as depicted in 

Figure 2 (A & B). The PPE treatment significantly 

downregulated the levels of BCL2 and HIF1-α to nearly 

normal levels, as illustrated in Figure 2 (A & B). 
 

Histological studies on mice colon cancer tissues: 

Figure 3 shows the histopathological analysis 

demonstrated the protective effects of PPE against 

bacterial infection-induced colon cancer in mice (H&E, 

100x), whereas Figure 3A showed the control group with 

normal colon tissue structure, including intact mucosa 

with glandular structures, submucosa, muscularis, and 

serosa. Figure 3B, bacterial infection-induced colon 

cancer showed desquamation of the mucosal epithelium, 

significant inflammatory cell infiltration in the lamina 

propria of the mucosa and submucosa, and anaplasia of 

the glandular epithelium exhibiting malignant 

characteristics such as disorganization, hyperchromasia, 

polarity loss, and pleomorphism, along with surrounding 

inflammatory cell infiltration. 5-fluorouracil-treated group 

after infection showed medium to mild lymphoid follicle 

hyperplasia in the submucosa, extending to the mucosa, 

accompanied by inflammatory cell infiltration (Figure 

3C), and PPE post-treated: the glandular structures 

remained intact and normal histological structure was 

maintained (Figure 3D). 
 

Oxidative stress markers in colon tissues: Analysis of 

colon tissue revealed that pathogen induction of colon 

cancer significantly (p≤0.05) decreased glucose, calcium, 

and lactate dehydrogenase (LDH) levels compared to 

controls. PPE treatment significantly (p≤0.05) increased 

glucose levels in all treated groups compared to the 

pathogen group, restoring them to normal in the PPE-

treated group. Calcium levels were significantly (p≤0.05) 

increased by the extract in all treated groups, achieving 

normal levels. 

Furthermore, bacterial infection significantly (p≤0.05) 

reduced total antioxidant capacity (TAC) and the activity 

of catalase (CAT) and glutathione peroxidase (GPx) 

enzymes while significantly (p≤0.05) increasing lipid 

peroxidation (LPO) and total phenolic content (TPC) 

compared to controls. PPE treatment significantly 
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Fig. 1: Cytotoxicity of PPE against three cancer cell 

lines: (A, B) control and PPE-treated Hela cancer cell 
lines, (C, D) control and PPE-treated HePG2 cell 
lines, and (E, F) control and PPE-treated Caco2 

cancer cell lines; G, Histogram of Cancer cell 
viability response to PPE treatments. Lowercase 
letters above columns indicate significant differences 

at p<0.05. concentration (conc, µg/mL) 

 

(P≤0.05) increased TAC, CAT, and GPx while decreasing 

LPO and TPC in all treated groups compared to the 

infected group, with complete restoration to normal levels 

observed in the PPE-treated group. 
 

GC-MS based metabolomics: In the present study, the GC-

MS-based metabolomics approach has been applied to study 

the effect of PPE on the serum metabolic levels of BALB/c 

mice with pathogen-induced colon cancer, as shown in 

Figure 4. The score plot of this model shows complete 

segregation between the untreated colon cancer group (G2) 

and mice treated with PPE (G4), as illustrated in (Figure 4). 

The ratio between G2/G4 detected the fold change. 
 
Table 4: Impact of PPE on cellular components and oxidative stress 
markers in the colon tissues of albino mice with bacterial-induced colon 

cancer 

Markers C T1 T2 T3 

Glucose 3.77±0.1 1.2±0.2 2.69±0.2 3.71±0.6 

LDH 1750±6.3 1045±11.2 1425±10.3 1552±9.8 

Ca 0.19±0.02 0.2±0.01 0.18±0.03 0.17±0.02 
TAC  1.5±0.1 0.5±0.02 0.91±0.02 1.66±0.1 

CAT 44.9±0.98 11.9±0.5 43.69±1.2 44.45±1.6 
POD 20.98±1.2 11.5±0.4 20.55±1.5 21.41±1.1 
LPO 44.3±1.1 145.63±3.5 56.33±2.1 45.32±1.4 

TPC 11.36±0.9 19.36±0.6 10.69±0.5 11.22±1.1 

n=3, data are presented mean±SE. lactate dehydrogenase (LDH), total 

antioxidant capacity (TAC), catalase (CAT), peroxidase (POD), lipid 

peroxidation (LPO), and total phenolic content (TPC).  

DISCUSSION 

 

Colon cancer is the 3rd most common cancer and 

the 2nd leading cause of cancer-related deaths globally 

(Morgan et al., 2023). Significant advances in the 

treatment of colon cancer were found either with 

resectable or metastatic tumors (Loree and Kopetz, 

2017). Recent research demonstrated that specific 

pathogenic bacteria can significantly contribute to 

colon carcinogenesis through multiple mechanisms 

(Avril and DePaolo, 2021). Experimental studies 

utilizing rat models have been particularly valuable in 

elucidating these microbial influences, providing 

crucial insights into the complex relationship between 

gut microbiota and cancer development (Lindell et al., 

2022). These animal studies revealed that pathogenic 

bacteria promote tumorigenesis through distinct and 

interrelated pathways, including disrupting microbial 

homeostasis, induction of chronic inflammation, direct 

DNA damage, and modulation of host immune 

responses (Li et al., 2022). 

The process begins with microbial dysbiosis, where 

an imbalance in gut microbiota composition creates a pro-

tumorigenic environment (Mignini et al., 2023). Research 

in rat models has shown that antibiotic-mediated depletion 

of gut microbiota can reduce tumor incidence 
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Fig. 2: Serum levels of BCL2 (A), and HIF1-α (B) in various studied 

groups. Data were expressed as mean ± SD (n=8 for each group). 
Different letters indicate significant differences at P< 0.05. 

 

 
Fig. 3: Histopathological analysis demonstrated the protective effects of 
PPE against bacterial infection-induced colon cancer in rats (H&E, 100x). 
A) control colon tissues; (B) bacterial infection-induced colon cancer 

group; (C) 5-fluorouracil-treated group after infection; (D) PPE-treated 
group after infection. 

 

deliberate colonization with pathogenic bacteria 

accelerates tumor formation (Paudel et al., 2024). 

Particular attention focused on Fusobacterium nucleatum, 

which was consistently identified in human CRC patients 

and experimental rat models (Liu et al., 2024). This 

pathogen promotes tumor progression through its ability 

to suppress host immune responses, creating favorable 

conditions for malignant growth (Wu et al., 2022). 

The inflammatory cascade represents another critical 

pathway, with enterotoxigenic Bacteroides fragilis 

(ETBF) as a prime example (Zhuang, 2022). ETBF 

secretes the B. fragilis toxin (BFT) that damages the 

intestinal  

 

 
Fig. 4: Differential metabolite biomarkers as revealed for the 
multivariate OPLS-DA and univariate analysis of the studied groups i.e., 
untreated mice with pathogen-induced colon cancer group (G2) vs mice 

treated with PPE group (G4). The VIP values of significant biomarkers 

(A) and fold change in biomarkers between untreated and PPE-treated 
groups (B). 

 

epithelial cells, triggering chronic inflammation (Yang et 

al., 2024). This persistent inflammation was stated to 

increase reactive oxygen species (ROS) production and 

proinflammatory cytokines such as IL-6 and TNF-α, 

promoting DNA damage and uncontrolled cellular 

proliferation (Antar et al., 2023). Rat studies 

demonstrated that ETBF infection induces T helper 17 

(Th17) immune responses strongly associated with CRC 

progression (Wu et al., 2022). 

Perhaps more directly concerning is the genotoxic 

potential of certain bacterial species. Some pathogens 

produce toxins that damaged host DNA (Martin and 

Frisan, 2020). Notably, specific strains of Escherichia coli 

(particularly those carrying the pks genomic island) 

produce colibactin, a potent genotoxin that induces 

double-strand DNA breaks and chromosomal instability 

(Auvray et al., 2021). Experimental evidence from rat 

models shows that exposure to colibactin-producing E. 

coli significantly increases the frequency of colonic 

adenocarcinomas (Wang and Fu, 2023). Similarly, 

Salmonella Typhimurium infection has been shown to 

promote CRC development in rats by activating the β-

catenin signaling pathway, a key regulator of cell 

proliferation and tumorigenesis (Al-Qarraawi and Al-

Awade, 2024). These findings highlight the diverse 

mechanisms pathogenic bacteria can initiate and promote 

colorectal carcinogenesis. 

The immune system's role in this process is equally 

critical, as pathogenic bacteria developed sophisticated 

strategies to evade host defenses (Thakur et al., 2019). 

Multiple studies have demonstrated that these microbes 
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can suppress anti-tumor immunity by modulating 

regulatory T cells (Tregs) and myeloid-derived suppressor 

cells (MDSCs) (Haist et al., 2021). Fusobacterium 

nucleatum inhibited natural killer (NK) cell activity, 

enabling tumor cells to evade immune surveillance 

(Pignatelli et al., 2023). Rat models further revealed that 

bacterial infections increase immunosuppressive 

cytokines such as IL-10 and TGF-β production, creating a 

microenvironment that favors tumor growth and 

progression (Mir et al., 2023). 

The azoxymethane (AOM)-treated rat model has been 

particularly informative in studying these processes 

(Dzhalilova et al., 2023). Research using this model has 

shown that ETBF colonization results in 

hyperproliferative crypts and tumor development at 

significantly higher rates than controls (Zhuang, 2022). 

Mechanistic studies have revealed that the BFT toxin 

activates NF-κB and STAT3 signaling pathways, which 

are known drivers of inflammation and tumor growth (Wu 

et al., 2022). Similarly, rats infected with colibactin-

producing E. coli exhibit increased aberrant crypt foci 

(ACF), recognized precursors to CRC (Wang et al., 

2021). The impact of Fusobacterium nucleatum has also 

been demonstrated, with infected rats developing larger 

and more invasive tumors than controls. This effect 

appears mediated through the bacterium's ability to 

enhance Wnt/β-catenin signaling, a pathway fundamental 

to CRC progression (Li et al., 2021). 

These findings have important therapeutic 

implications, suggesting multiple avenues for 

intervention. Microbiome-based strategies such as 

probiotics and fecal microbiota transplantation (FMT) 

promise to restore healthy microbial balance and 

potentially reduce CRC risk (Sahle et al., 2024). Targeted 

approaches, including antibiotic therapies and specific 

anti-toxin agents (such as colibactin inhibitors), could 

help prevent tumor initiation in high-risk individuals. 

Additionally, immunomodulatory therapies designed to 

enhance antibacterial immune responses may help 

counteract the inflammation-driven aspects of 

carcinogenesis (Terveer, 2020). 

Nevertheless, these treatments have many serious 

side effects. Therapeutic modalities using plant sources 

have been increasingly popular recently as safer options 

with fewer side effects than traditional anticancer drugs 

(Huang et al., 2021). Pomegranates have been used in the 

treatment of several diseases. Moreover, pomegranate 

showed promising chemo-preventive activity against 

different types of cancer (Rauf et al., 2025), such as 

breast, prostate, and lung cancers in cells, animal models, 

and humans (Sharma et al., 2017). 

Medicinal plants have historically been utilized for 

their diverse pharmacological properties to prevent and 

treat various human diseases. This therapeutic potential is 

mainly due to their rich array of primary and secondary 

metabolites, including flavonoids, phenolic compounds, 

alkaloids, and tannins (Selim et al., 2022; El-Saadony et 

al., 2024a,b). Pomegranates, in particular, have 

demonstrated several medicinal benefits and are effective 

in managing diabetes, erectile dysfunction, obesity, 

reproductive disorders, and arthritis (Mueed et al., 2023; 

Rauf et al., 2025). 

In this context, extensive research conducted over the 

past two decades (Singh et al., 2023) underscored the 

multifaceted pharmacological benefits of P. granatum L., 

commonly known as pomegranate. These benefits include 

anticancer, anti-inflammatory, antioxidant, and 

antimicrobial properties (Alsubhi et al., 2022). With the 

growing production of pomegranate products, peel extract 

(PPE) has emerged as a valuable by-product (El Hosry et 

al., 2023). PPE is notably rich in primary bioactive 

compounds, often in higher concentrations than those 

found in the fruit's edible parts, and is abundant in 

antioxidants and phytochemicals (Yassin et al., 2021). 

The investigation utilized HPLC-DAD and MS/MS 

techniques to analyze the pomegranate peel extract, 

revealing a wide range of secondary metabolites through 

phytochemical profiling (Saad et al., 2021; Ruan et al., 

2022). The PPE contains a wide range of phenolic 

compounds, which vary depending on environmental 

factors, cultivar differences, and ripening stages 

(Kharchoufi et al., 2018). P. granatum extract had a 

similar antioxidant capacity as Trolox. The lower IC50 

values suggest that the pomegranate peel extract may 

exhibit substantial antioxidant effects at lower doses than 

Trolox, highlighting its impressive antioxidant potential 

(Sihag et al., 2022). Furthermore, a significant correlation 

was observed between polyphenol concentration and 

antioxidant efficacy, reinforcing that polyphenols 

neutralize free radicals and protect essential biomolecules 

from oxidative damage (Benchagra et al., 2021). 

Research indicates that PPE is rich in gallic acid, 

ellagic acid, and punicalagin derivatives, critical 

components of its phenolic profile (Feng et al., 2022). 

Pomegranate peel is exceptionally high in phenolic acids, 

flavonoids, and ellagitannins, contributing to its 

antioxidant activity and health benefits (Kharchoufi et al., 

2018). The pomegranate peel demonstrates greater 

antioxidant activity and a higher concentration of phenolic 

compounds than other parts of the fruit. The accumulation 

of phenolic compounds in the peel likely reflects its role 

as a protective barrier for the fruit (Derakhshan et al., 

2018). 

Most chemo-preventive agents are antioxidant in 

nature. Fruits high in polyphenols are considered 

antioxidant and chemo-preventive (Imran et al.,  2023). 

Pomegranate has been shown to exert anticancer and 

antioxidant activity, which is generally attributed to its 

high content of polyphenols due to its effects of 

neutralizing free radicals (Turrini et al., 2015). In this 

study, PPE showed high antioxidant capacity, which may 

be attributed to the excessive polyphenolic contents, 

represented by flavonoids and phenolic acids as free 

radical scavengers. The high antioxidant capacity may be 

attributed to excessive polyphenolic content, represented 

by flavonoids and phenolic acids (Sihag et al., 2022; Rauf 

et al., 2025).  

One of the most distinguishing characteristics of 

cancer cells is their resistance to apoptosis. Oncogenes 

and tumor suppressor genes are well-established apoptosis 

regulators (Xia et al., 2022). Regarding oncogenes, they 

can regulate apoptosis by producing antiapoptotic 

proteins, conferring cancer cells a survival benefit over 

normal cells (Wang et al., 2023). So, these proteins are 

overexpressed in cancer cells and have a concurrent lower 
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level in normal cells (Li et al., 2012). Thus, disrupting the 

function of these antiapoptotic proteins is one of the 

approaches used to eradicate malignant cells with minimal 

effect in the surrounding normal cells (Radha and 

Raghavan, 2017). 

Antiapoptotic protein BCL2 is encoded by the BCL2 

(B cell lymphoma gene 2) gene family that produces 

either antiapoptotic proteins such as BCL2 or proapoptotic 

proteins such as Bcl-2 associated protein X (Bax) and Bcl-

2 homologous antagonist/killer (Bak) (Poincloux et al., 

2009). Thus, the overexpression of BCL2 protein protects 

the malignant cells from apoptosis and triggers their 

propagation. BCL2 overexpression was first noted in B-

cell follicular lymphoma (Miyaoka et al., 2018). 

Subsequently, BCL2 overexpression was reported in 

several cancers, such as breast, lung, thyroid, 

nasopharyngeal, prostate, liver, ovarian, leukemia, 

neuroblastoma, and colorectal cancers (Credendino et al., 

2019; Zhou et al., 2019; Jin et al., 2021). The observed 

overexpression of BCL2 in many cancers confirms its 

vital role in cancer and makes it an ideal target for cancer 

therapy. 

In the current study, we assessed the reducing effect 

of PPE on BCL2 serum levels in the bacterial pathogen-

induced colon cancer mice group compared to the 

negative control group. In line with our findings, Larrosa 

et al., (2006) stated that ellagitannins (pomegranate 

Punicalagin) and its metabolite ellagic acid provoke 

apoptosis in human colon adenocarcinoma Caco-2 cells 

without affecting the normal colon cells, suggesting their 

anticancer effect of dietary ellagitannins in colon cancer 

which support our results. Recently and similar to our 

findings, Ganjouzadeh et al. (2022) reported the 

cytotoxicity activity of PPE on breast cancer cells via 

increasing Bax/Bcl-2 ratio and the intracellular ROS. 

Moreover, our results agreed with that of Cheshomi et al. 

(2022), who demonstrated a significant anticancer activity 

of ellagic acid of pomegranate extract on gastric cancer 

cell via reduction of BCL2 and stimulation of apoptosis in 

addition to inhibition of tumor growth in 

immunocompromised mice, supporting our study 

outcomes. 

Interestingly, PPE showed an important anticancer 

activity against prostate cancer cells via reduction of 

BCL2 expression, inducing apoptosis, and impairs 

metastasis (Farooqi, 2021). Also, pomegranate extract 

showed an antiproliferative effect against oral cancer cells 

through the induction of mitochondrial dysfunction and 

apoptosis and the Bax/BCL2 ratio (Peng et al., 2021), 

which agreed with our results. Most solid tumors, 

including colon cancer, are permanently or transiently 

exposed to hypoxia due to a deficient blood supply and 

aberrant vascularization (Matuszewska et al., 2021). The 

hypoxia-inducible factors (HIFs) mediate the cellular 

response to hypoxia, thus encouraging modifications 

associated with cancer progression and metastasis 

(Lappano et al., 2020). The transcription factor hypoxia-

inducible factor 1 (HIF-1) is a member of the HIF family, 

consisting of an O2-regulated HIF-1α subunit assembled 

with a constitutively produced HIF-1b subunit (Albadari 

et al., 2019). 

Hypoxia controls HIF-1α activation via post-

translational modifications. Oxygen leads to the post-

translational hydroxylation of HIF-1α and promotes its 

degradation (Daly et al., 2021). In contrast, the absence of 

oxygen stabilizes HIF-1α, allowing its binding to hypoxia-

response elements in the nucleus, thus activating many 

HIF-target genes involved in cancer growth, metastasis, 

and anaerobic metabolism (Albanese et al., 2020). 

Furthermore, HIF-1α disrupts DNA repair and, more 

importantly, suppresses apoptosis by altering the ratio 

between proapoptotic and antiapoptotic BCL-2 family 

members via triggering antiapoptotic proteins such as 

BCL2 and BCL-xl (Wang et al., 2022). Thus, HIF-1α 

protein is overexpressed in several human cancers (Iovine 

et al., 2016). 

In the present study, we evaluated the serum level of 

HIF-1α in bacterial pathogen-induced colon cancer mice 

treated with the PPE group compared with the negative 

control group; consistent with our findings, the inhibition 

of HIF-1α and autophagy suppress colon cancer growth 

and proliferation (Albanese et al., 2020). Similarly, 

suppressing HIF-1α by L-carnosine dipeptide prevents 

colon cancer cells' resistance to 5- 5-fluorouracil, 

promoting its anticancer activity and stimulating apoptosis 

of colon cancer cells (Husari et al., 2017). 

In line with our findings, Husari et al., (2017) 

reported pomegranate concentrate has chemotherapeutic 

activity against cigarette smoke-induced lung cancer in an 

animal model via inhibition of HIF-1α expression. In 

addition, treatment of lung cancer cells and tumor-bearing 

mice with ellagitanins significantly inhibited tumor 

growth via increased AMP-activated protein kinase and 

suppressed HIF-1α, suggesting that ellagitanins might be a 

promising anticancer agent (Duan et al., 2020). 

Using a based metabolomics approach to analyze the 

relationship between different metabolites and diseases is 

of great value (Galal et al., 2022). Thus, it could support 

us with valuable knowledge about disease diagnosis, 

prognosis, and pathogenesis (Piras et al., 2022). In the 

current study, numerous metabolites related to bacterial 

pathogen-induced colon cancer were observed via GC-

MS-based metabolomics approach as 1H-indole-3-acetic 

acid, heptanoic acid, benzoic acid, alanine, phenylalanine, 

and glucose. This study showed a significant reduction of 

1H- indole-3-acetic acid and heptanoic acid in mice 

treated with the PPE group compared with the untreated 

mice with the pathogen-induced colon cancer group.  

In contrast, the PPE-treated mice group significantly 

increased benzoic acid, alanine, phenylalanine, and 

glucose. Indole derivatives are a type of serum metabolite, 

including indole-3-acetic acid, indole-3-propionic acid, 

serotonin, and other compounds. All these metabolites 

resulted from tryptophan metabolism (Konopelski and 

Mogilnicka, 2022). These protect the gastrointestinal tract 

from stress-induced illnesses such as cancers. These are 

produced mainly by the intestinal transformation of 

Escherichia coli (Xiao et al., 2024). Recently and 

supporting our results, gut microbiota-derived tryptophan 

metabolites such as indole-3-acetic acid maintain gut and 

systemic homeostasis (Su et al., 2022). 

 

Conclusions: The novel hybrid ultrasound-microwave 

extraction method proved to be an efficient technique for 

obtaining polyphenolic-rich pomegranate peel extracts 

with significant anticancer and antioxidant properties.  In 
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vitro studies demonstrated potent cytotoxic effects against 

HeLa, colon, and HepG2 cancer cell lines, suggesting the 

potential of these extracts as natural chemotherapeutic 

agents. Additionally, in vivo studies in albino mice 

confirmed their antioxidant capacity, reducing oxidative 

stress markers while exhibiting minimal toxicity to normal 

cells. These findings highlight the therapeutic potential of 

pomegranate peel polyphenols as complementary agents 

in cancer treatment, offering a promising alternative to 

synthetic drugs with fewer side effects. Further research is 

warranted to elucidate the precise molecular mechanisms 

and optimize dosage formulations for potential clinical 

applications. 
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