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 Poultry production is a vital source of dietary protein globally, but it faces ongoing 

challenges from bacterial diseases such as salmonellosis, colibacillosis and necrotic 

enteritis (NE). These infections not only compromise poultry health but also lead to 

significant economic losses and pose serious zoonotic risks to human health. 

Traditionally, antibiotics have been the primary method for controlling these bacterial 

diseases. However, the overuse and misuse of antibiotics have contributed to the rapid 

emergence of antimicrobial resistance (AMR), rendering many treatments ineffective 

and facilitating the spread of resistant bacterial strains. This review explores the 

urgent need to advance poultry disease management through alternative strategies, 

with a focus on bacteriophage therapy. Bacteriophages, viruses that selectively infect 

and destroy bacteria, offer a targeted approach to treating bacterial infections, 

including those caused by antibiotic-resistant strains. Phage therapy has shown 

promising results in reducing bacterial loads of pathogens like Salmonella, 

Campylobacter, and Escherichia coli in poultry, while minimizing negative 

environmental impacts. Additionally, the review highlights innovative encapsulation 

and delivery techniques that can enhance phage stability and controlled release in the 

poultry gut. Bacteriophage therapy shows promise as a solution to antibiotic 

resistance (AMR) in poultry farming, but it faces ethical and regulatory challenges 

that need to be resolved. The paper concludes that, with advancements in delivery 

and encapsulation technologies, bacteriophage therapy offers a sustainable way to 

reduce antibiotic use, improve poultry health, and ensure the safety of poultry 

products for human consumption. 
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INTRODUCTION 

 

Poultry is a critical component of global food systems, 

providing a substantial portion of the population with 

essential protein through meat and eggs (Pius et al., 2021). 

However, the industry faces significant challenges from 

bacterial diseases such as salmonellosis, colibacillosis, and 

other infections, which negatively impact poultry health 

and productivity. These diseases, caused by bacteria like 

Salmonella, campylobacter and Escherichia coli, lead to 
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high morbidity and mortality rates in poultry flocks, 

resulting in increased veterinary expenses and biosecurity 

measures (Grace et al., 2024). 

Salmonellosis, in particular, poses serious concerns 

due to its zoonotic nature, as infected poultry can transmit 

the bacteria to humans through contaminated meat and 

eggs (Gast et al., 2024). The economic burden associated 

with managing salmonellosis is significant, with losses due 

to decreased productivity, higher mortality rates, and 

increased disease control measures, amounting to millions 

of dollars annually (Shaji et al., 2023). Similarly, 

colibacillosis, primarily related to respiratory diseases in 

poultry, leads to poor feed conversion ratios, low body 

weight, and elevated mortality, all of which negatively 

affect the industry's profitability (Serbessa et al., 2023). 

The substantial economic losses coupled with public health 

concerns underscore the critical need for effective 

strategies to control and manage these infections. 

For decades, antibiotics have been the mainstay of 

bacterial disease management in poultry. However, the 

overuse and misuse of antibiotics have led to the emergence 

of antibiotic-resistant bacteria (AMR), which diminish the 

efficacy of conventional treatments. AMR has forced the 

poultry industry to rely on more potent and costly 

antibiotics, exacerbating production costs and creating an 

economic strain (Panyako et al., 2022). Moreover, 

antibiotic residues in poultry products pose health risks to 

consumers, while the environmental pollution caused by 

antibiotic runoff raises concerns about long-term 

sustainability (Tian et al., 2021). Given the limitations and 

risks associated with the use of antibiotics, exploring and 

implementing alternative strategies is vital to ensure 

continued poultry health and productivity, protect 

consumer health, and combat the spread of antimicrobial 

resistance (Abreu et al., 2023). 

Bacteriophage therapy has emerged as a promising 

biocontrol strategy. It uses viruses to specifically target and 

kill bacterial cells without affecting beneficial bacteria in 

the poultry gut, reducing the likelihood of collateral 

damage (Harshitha et al. 2022; Mills et al.,2017). This 

targeted action makes phage therapy a valuable tool in 

managing bacterial infections (Zhang et al., 2022). 

Research has demonstrated the efficacy of bacteriophages 

in controlling pathogens such as Salmonella spp, 

Campylobacter spp, and E. coli in poultry. For instance, 

adding phage cocktails to poultry diets has been shown to 

reduce Salmonella spp colonization in the gut, minimizing 

the risk of transmission through meat products (Siddique et 

al. 2018; Kwaśnicka et al., 2022). Similarly, phages 

specific to Campylobacter spp, have reduced bacterial 

density in broiler chickens, improving overall flock health 

(Olson et al. 2022; Ushanov et al., 2020). The application 

of bacteriophages offers several advantages over 

conventional antibiotic treatments. They can be 

administered orally through feed or drinking water, or via 

sprays in poultry housing environments. Furthermore, 

bacteriophages preserve natural microbiota and 

physicochemical and organoleptic properties of food 

(Chowdhury et al., 2023). While phage therapy offers a 

promising and focused approach to combating antibiotic 

resistant bacteria, its practical application depends on 

overcoming challenges related to phage persistence in the 

gastrointestinal tract, controlling phage release, and 

effectively targeting pathogens. Optimizing these factors is 

essential to maximize therapeutic success and facilitate its 

widespread application in poultry production.  
The objective of this review is to assess phage therapy 

as a sustainable alternative to antibiotics in poultry disease 
management. This article will explore advanced delivery 
systems and encapsulation methods to improve phage 
effectiveness against different prevalent bacterial 
pathogens in poultry.  
 

Bacterial diseases in poultry: Bacterial diseases affecting 
poultry are devastating not only to the health and well-
being of chickens but also to the economic sustainability of 
poultry farming (Hafez et al. 2020; MartinHalder et al., 
2021). Among the most severe bacterial diseases are 
salmonellosis, colibacillosis, and necrotic enteritis. These 
diseases vary in terms of their epidemiology, causative 
agents, and consequences on both poultry and human 
health (Lutful et al., 2010; Martin et al., 2021). Below is an 
overview of these diseases, their impacts, and their public 
health implications. 
 

Salmonellosis: Salmonellosis is caused by bacteria of the 
Salmonella genus, which are facultative anaerobic, gram-
negative rods. These bacteria typically inhabit the 
intestines of poultry and spread through contaminated feed, 
water, or the environment (Ahmed et al., 2016). The most 
common serovars affecting poultry are S. enteritidis and S. 
typhimurium. The disease often remains asymptomatic in 
birds, which complicates containment efforts. Since 
salmonellosis is zoonotic, it can be transmitted to humans 
through the consumption of contaminated poultry meat or 
eggs (Yousuf et al., 2023). 

Economically, salmonellosis leads to reduced 
production yields, increased mortality, and high costs 
associated with vaccination and stringent control measures 
(Hossain et al. 2021). From a public health perspective, the 
disease can cause severe gastrointestinal symptoms in 
humans, including diarrhea, fever, and abdominal cramps, 
with more serious complications in immuno-compromised 
individuals (Sell et al., 2018). Moreover, Salmonella spp, 
isolated from poultry are mainly resistant to antibiotics, 
leading to current treatment failures (Yasmin et al., 2018). 
Based on the high antibiotic resistance rate in Salmonella, 
and its impact on food safety, there is an urgent need of 
intervention measures and proper surveillance to control 
antibiotic resistance. 
 

Colibacillosis: Colibacillosis, caused by E. coli, is another 
major bacterial disease in poultry. Although E. coli is a part 
of the normal flora in healthy birds, it can become 
pathogenic, leading to diseases such as pneumonia, 
septicemia, and cellulitis (Awawdeh et al., 2023). The 
disease spreads rapidly under poor environmental 
conditions, such as overcrowding and inadequate 
ventilation in chicken houses (Lutful et al., 2010). 

Economically, colibacillosis results in poor feed 
conversion, reduced weight gain, and high mortality rates, 
especially in broilers. Poultry producers incur significant 
costs for treatment, prevention, and losses from condemned 
carcasses. Although its public health risk is lower than that 
of salmonellosis, there is growing concern over antibiotic-
resistant strains of E. coli that can enter the human food 
chain (Fairbrother et al.,2019). 
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 Necrotic Enteritis (NE): Necrotic enteritis (NE) is caused 

by Clostridium perfringens, a gram-positive, spore-

forming bacillus, commonly found in the environment and 

gastrointestinal tracts of healthy birds (Fathima et al., 

2022). NE typically develops after disruptions to the 

intestinal microflora, often following coccidiosis infections 

or the use of antibiotics, which create favorable conditions 

for C. perfringens to produce toxins that damage the 

intestinal epithelium. High stocking densities and high-

protein diets are key risk factors contributing to NE 

outbreaks (Abd El-Hack et al., 2022). 

Economically, NE inflicts significant losses on broiler 

production due to poor feed conversion, weight loss, and 

increased mortality rates. The disease can affect up to half 

of a flock and leads to high morbidity. Although NE is not 

considered a zoonotic threat to humans, it poses a 

considerable economic burden on poultry producers 

through prevention, treatment costs, and its negative 

impact on meat quality (McDevitt et al., 2006). 

 

Use of antibiotics in poultry and the associated 

disadvantages: The Egyptian Poultry Federation reports 

that antibiotics have been used in poultry farming since the 

1950s for controlling bacterial diseases, therapeutic 

purposes, and as growth promoters (Azizi et al., 2024). 

These drugs have played a crucial role in maintaining the 

health and productivity of poultry populations. However, 

the excessive and improper use of antibiotics has led to 

significant problems, particularly the development of 

AMR, a critical issue for both animal and human health 

(Salam et al., 2023). Table 1 shows the list of some of the 

commonly used antibiotics in poultry farming, the 

pathogens they target, and the associated risks. 

Tetracyclines and sulfonamides are among the most 

used antibiotics in poultry farming due to their 

effectiveness against bacterial pathogens such as E. coli 

and Salmonella. These antibiotics are frequently employed 

not only for therapeutic purposes but also as growth 

promoters, which has accelerated the development of 

bacterial resistance. Research indicates that residues of 

these antibiotics, particularly sulfonamides, remain present 

in poultry products, posing potential health risks to 

consumers (Martínez et al., 2018). Another group of widely 

used antibiotics in poultry is fluoroquinolones, which are 

highly effective against Campylobacter and E. coli. 

However, their use contributes to the transfer of antibiotic 

resistance to human pathogens, complicating the treatment 

of bacterial infections in humans (Abd El-Hack et al., 

2022). 

While antibiotics have helped to sustain the poultry 

industry, their overuse has contributed to the rise of 

antibiotic-resistant bacteria. This threatens food safety, 

human health, and the environment, as resistant bacteria 

can spread from poultry to humans through food 

consumption or environmental contamination. In response, 

alternative methods for controlling bacterial infections in 

poultry, such as bacteriophage therapy, have gained 

attention (Jiang et al., 2024). 

 

Bacteriophages as an alternative to antibiotics 

Mechanism of phage action: Bacteriophages, or phages, 

are viruses that specifically infect and destroy bacteria. 

Phages were discovered in the early 20th century, they have 

emerged as a promising alternative for combating bacterial 

infections, particularly in cases where antibiotic resistance 

poses a significant challenge (Jamal et al., 2019; Uddin et 

al., 2021). Phages are among the most abundant and 

diverse organisms on earth, with an estimated 10^31 phage 

particles present in environments such as soil, water, and 

the intestines of animals (Abedon et al., 2011). 

Phages operate through a precise mechanism. They 

first bind to specific receptors on the surface of their target 

bacteria (Dowah and Clokie, 2018; Hussain et al. 2021). 

Once attached, phages inject their genetic material into the 

bacterial cell, hijacking the host's cellular machinery to 

replicate phage DNA and synthesize new phage particles. 

This process culminates in the lysis, or bursting, of the 

bacterial cell, releasing new phages that can go on to infect 

additional bacterial targets (Tian et al., 2021). 

Bacteriophages can be beneficial in treating poultry 

bacterial disease as compared to traditional antibiotics, as 

shown in Fig 1.   

 

Advantages over antibiotics: Bacteriophages are highly 

selective for their bacterial hosts, significantly reducing the 

risk of dysbiosis and minimizing collateral damage to 

beneficial bacteria. This specificity makes phage therapy a 

targeted approach to bacterial infections (Pottie et al. 

2024).  Moreover, phages can self-replicate, potentially 

allowing for continuous population control without the 

need for frequent dosing. This self-replicating nature can 

enhance the long-term effectiveness of treatment (Hoyle 

and Kutter, 2021). Additionally, phages have a minimal 

ecological footprint. After eliminating their target bacteria, 

they decompose quickly in the environment, reducing 

concerns about long-term environmental effects (Salmond 

et al., 2015). In addition, bacteria can develop resistance to 

phages, but phages can mutate to overcome these defenses, 

thus maintaining their effectiveness over time (Hasan et al., 

2022). This co-evolutionary arms race is in stark contrast 

to antibiotics, where the emergence of resistance often 

leads to treatment failure without the opportunity for rapid 

adaptation. 

 

Studies on the use of bacteriophages in poultry: 

Bacteriophage therapy has shown significant promise in 

controlling bacterial diseases in poultry, improving food 

safety, and enhancing bird health (Shakir et al., 2024). Case 

studies demonstrate its effectiveness, particularly in 

reducing harmful pathogens like Salmonella, 

Campylobacter, and E. coli. In one study, a phage targeting 

S. enteritidis added to poultry feed significantly reduced 

intestinal colonization, indicating its potential as a 

prophylactic tool in farming (Kimminau et al., 2020). 

Similarly, Campylobacter. coli levels were substantially 

reduced when broilers were treated with a phage cocktail 

in their drinking water, lowering contamination risks in 

poultry products (Steffan et al., 2022). In another case, 

aerosolized phages effectively treated E. coli infections, 

improving bird health and reducing mortality rates (Nicolas 

et al., 2023). 

Beyond direct disease control, bacteriophages have been 

explored to enhance production and nutrient utilization in 

poultry. Research indicates that phages can promote body 

weight gain and improve feed conversion ratios, 

particularly by eliminating harmful bacteria such as 
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Salmonella and C. perfringens, which allows beneficial gut 

bacteria like Lactobacillus to thrive (Jiang et al., 2024). 

Additionally, when combined with probiotics, phages 

further improve poultry performance, supporting the 

development of cost-effective, sustainable solutions for the 

poultry industry (Islam et al., 2023). Moreover, Phage 

treatments have been proven to reduce pathogen loads in 

raw and processed meats, even under refrigeration, 

enhancing food safety throughout the supply chain. The 

stability of some phages across various food types and their 

simple application makes them a promising tool in modern 

food safety management (Vikram et al. 2023). These 

findings underscore the potential of phages as a natural, 

targeted alternative to antibiotics in industrial poultry 

production (Garvey et al., 2022). Several phages targeting 

pathogens like Campylobacter, Salmonella, and E. coli are 

listed in Table 2. 

 

Use of phage-derived enzymes: Endolysins and holins are 

key components in the bacteriophage life cycle, 

specifically involved in breaking down the bacterial cell 

wall. In addition to whole bacteriophages, these phage-

derived proteins are also being explored for their 

antibacterial properties (Grabowski et al., 2021). 

Endolysins are enzymes produced by bacteriophages 

during the early stages of bacterial cell lysis. These 

enzymes degrade the bacterial cell wall, facilitating the 

release of new phage particles by lysing the host cell. Due 

to their ability to specifically target and break down 

bacterial  cell  walls,  endolysins  are  being investigated as 
 

 
 

Fig 1: Mechanism of antibiotic spread in poultry and the importance of bacteriophage therapy. This figure shows how antibiotic resistance spreads in 
poultry through overuse and environmental contamination. It highlights bacteriophage therapy as a targeted alternative to combat antibiotic-resistant 
bacteria while preserving healthy gut microbiota and reducing reliance on traditional antibiotics. 
 

Table 1: Commonly used antibiotics in poultry and associated drawbacks 

Antibiotic Target Pathogen Purpose Associated drawbacks 

Tetracyclines E. coli, Mycoplasma spp. Treatment and growth promotion Development of resistant bacterial strains (Smith and 
Coast, 2013) 

Sulfonamides Salmonella spp., E. coli Treatment of infections Persistence of residues in meat and eggs (Hassan et al., 
2021) 

Fluoroquinolones Campylobacter spp., E. coli Treatment of respiratory and enteric 

diseases 

Transfer of resistance to human pathogens (Campos A, 

2021) 

Macrolides Mycoplasma spp., Clostridium 
spp. 

Treatment of respiratory infections Potential for cross-resistance with other antibiotics 
(Founou et al., 2016) 

Aminoglycosides E. coli, Pseudomonas spp. Treatment of severe infections Toxicity and environmental contamination (Kemper, 
2008) 

Beta-lactams 
(Penicillins) 

Staphylococcus spp., 
Streptococcus spp. 

Treatment of Gram-positive bacterial 
infections 

Reduced effectiveness due to widespread resistance 
(Gouvêa et al., 2015) 

 
Table 2: Bacteriophage isolated against poultry pathogens and their effectiveness. 

Bacteriophage Target Pathogen Application Method Effectiveness Citation 

PHL4 S. enteritidis Spray Application 
on Carcasses 

Significant reduction in Salmonella colonization (Higgins et al., 2005) 

vB_CcM Campylobacter jejuni, 
Campylobacter coli 

Water supply Decreased Campylobacter levels in broilers (Steffan et al., 2022) 

CEV1 Escherichia coli O157:H7 Oral Delivery Reduction in intestinal E. coli O157:H7 levels (Raya et al., 2006) 

F01-E2 S. typhimurium surface of various 
RTE food products 

Complete elimination of viable Salmonella from food products (Von et al., 2013) 

CP220 Campylobacter coli and 
Campylobacter jejuni 

Oral gavage Decreased Campylobacter colonization in chickens (El-Shibiny et al., 2009) 

ECML-4 Escherichia coli Applied on 

contaminated foods 

Effective reduction of E. coli in different foods (Abuladze et al., 2008) 

UAB_Phi20 Salmonella spp. In vivo oral route Reduced Salmonella prevalence in treated birds (Colom et al., 2015) 
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potential antimicrobial agents. They are particularly 

effective against Gram-positive bacteria because their 

peptidoglycan layer is more accessible to endolysins, 

enabling rapid bacterial eradication without the need for 

viral reproduction (Lu et al., 2020).  

On the other hand, Holins are small proteins, that play 

a pivotal role in the bacteriophage life cycle, by forming 

pores in the bacterial cell membrane. These pores allow 

endolysins to access and degrade the bacterial cell wall. 

Holins are also being studied for synthetic biology and 

biotechnological applications. Due to their ability to 

regulate membrane permeability, holins offer potential for 

timed and controlled release of antimicrobial or therapeutic 

molecules in bacterial cultures (Young et al., 2014). 

 

Encapsulation technologies for phage delivery in 

poultry: Due to its lower pH, encapsulation of 

bacteriophages can be used to combat the rapid 

deactivation of free phages in the chicken stomach for 

better delivery to poultry gut. The protection provided by 

encapsulation allows phages to remain viable, until they 

reach the target site of infection, which improves their 

efficiency in treating diseases. In addition, it allows the 

accurate distribution of phages (Vinnerås et al., 2021). 

Phages protected by encapsulation remain more stable 

during storage and feed processing. This technique is 

necessary to take advantage of phage therapy for safe, 

effective and permanent solutions for bacterial infections, 

and antibiotic resistance in poultry (Abbas et al., 2022). 

Various encapsulation strategies have been developed to 

enhance the delivery of bacteriophages to treat bacterial 

infections in poultry. Key formulations include: 

 

Alginate as a primary encapsulation medium: Alginate 

is a natural polysaccharide that serves as an effective 

primary encapsulation medium for phages due to its 

biocompatibility and hydrogel-forming capabilities (Pérez-

Luna et al., 2018). It significantly enhances phage survival 

rates, allowing more active phages to reach the 

gastrointestinal tract to combat pathogens like Salmonella 

and Campylobacter (Gomez-Garcia et al., 2021). Its 

affordability and low toxicity contribute to its popularity as 

a biopolymer for phage encapsulation (Sharma et al., 

2024). 

Early research utilized an ionic gelation method with 

calcium as a cross-linking agent, demonstrating that 

encapsulated Salmonella phage Felix O1 remained 

infectious in the gastrointestinal tract (Ma Yongsheng et 

al., 2008). Soto et al., 2018, reported that phages 

encapsulated in calcium alginate outperformed non-

encapsulated phages in a simulated water flow system, 

maintaining viability for an additional 100 hours, which is 

crucial for poultry applications. Pereira et al., 2023, 

successfully encapsulated a cocktail of lytic phages, against 

Salmonella enterica in calcium alginate microparticles for 

treating salmonellosis in chickens. 
Other strategies include encapsulating phages, 

targeting Salmonella Senftenberg 
(nontyphoidal Salmonella serotype), within an Eudragit™ 
L100 polymer and trehalose system (Lorenzo et al., 2022), 
as well as using xanthan-alginate-CaCl₂ particles with 
chitooligosaccharides, for Salmonella enteritidis delivery 
(Zhang et al., 2023). Additionally, alginate combined with 

whey protein has been applied for phage delivery against S. 
typhimurium (Alves et al. 2020; Lorenzo-Rebenaque et al., 
2022). While alginate protects phage from harsh stomach 
conditions and facilitates targeted intestinal release, 
ongoing research is focused on improving encapsulation 
stability and controlling phage release dynamics. The 
favorable regulatory profile, low toxicity, and cost-
effectiveness still make it the leading practical phage 
delivery system for poultry health. 
 

Chitosan encapsulation: Chitosan, derived from chitin, is 
another biopolymer utilized for phage encapsulation. Its 
positive charge enhances attraction to negatively charged 
bacterial membranes, improving phage attachment and 
entry. Studies indicate that chitosan-encapsulated phages 
maintain stability and activity for extended periods, making 
them suitable for use in poultry feed (Elsayed et al., 2024). 
Chitosan-based microbeads were also used for treating 
colibacillosis in chickens (Kaikabo et al., 2017). Based on 
its biocompatibility, and demonstrated ability to 
encapsulate different biological agents, chitosan is a 
promising and suitable biomaterial for surface coating and 
delivery of bacteriophages in poultry disease prevention. 
 

Liposome-based encapsulation: Liposomes serve as 
lipid-based carriers that can encapsulate phages, providing 
protection from environmental damage. They also enhance 
phage stability, allowing for prolonged functionality in the 
gastrointestinal tract (Pinilla et al., 2021). Colom et al., 
2015, compared the efficacy of liposome-encapsulated 
phages against non-encapsulated counterparts in broilers, 
highlighting the advantages of liposome-encapsulated 
phages (Colom et al., 2015). Several studies have shown 
that liposome-encapsulated bacteriophages demonstrate 
promising biodistribution. Liposome encapsulation has 
been shown to increase phage stability in the stomach and 
improve intestinal epithelial binding. In mice, encapsulated 
phages were detectable up to 72 h after exposure, whereas 
uncoated phages declined rapidly (Otero et al., 2019). With 
their ability to protect phages from harmful gastrointestinal 
conditions and improve their clinical efficacy, liposomes 
have emerged as a promising carrier system for 
bacteriophages in poultry applications. 
 

Nano-carriers for phage delivery: Nano-carriers 
represent a significant advancement in phage therapy 
delivery, providing protection against degradation and 
improving targeting capabilities (Paczesny et al., 2020). 
Polymeric nanoparticles, specifically poly (lactic-co-
glycolic acid) (PLGA), can be designed to encapsulate 
phages. These biodegradable nanoparticles can be 
programmed for timely phage release when targeted 
microbes are present in the gut, thereby enhancing 
therapeutic effectiveness while minimizing the required 
dosage (Yan et al., 2021). 

Research into gold nanoparticles has also gained 
traction, as these can act as vectors for phages, enabling 
targeted delivery to specific areas of the colon and offering 
protection from environmental degradation (Rosero et al., 
2024). Furthermore, gold nanoparticles can be modified to 
enhance their targeting capacity, further improving the 
efficacy of phage therapy. By facilitating delivery, 
enhancing mucosal targeting, and protecting against 
environmental   stress,   nanocarrier   systems,   particularly 
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Fig 2: This figure highlights A) Encapsulation Techniques and B) Routes of Administration for bacteriophage delivery in poultry disease management. In 

A, various encapsulation techniques such as alginate, chitosan, liposomes, and nano-carriers improve phage stability, control release, and target pathogen 
access. In B, the routes of administration include water, feed, aerosol spray, injection, and gavage, all aiming to effectively deliver bacteriophages to 
combat pathogens like Salmonella, E. coli, and Campylobacter, enhancing poultry health and food safety. 

 

PLGA and gold nanoparticles, represent a high-throughput 

approach to improve phage delivery and safe 

administration in poultry (Saha et al., 2022). Figure 2 

depicts various phage delivery polymers and their routes of 

administration.  

 

Novel formulations for phage therapy: Recent 

advancements in phage therapy include the development of 

novel formulations that combine bacteriophages with other 

bioactive compounds to enhance their antimicrobial 

activity (Rajendran et al., 2022). 

 

Phage-prebiotic combinations: Integrating phages with 

prebiotics, such as inulin or fructo-oligosaccharides, not only 

inhibits pathogenic bacteria but also promotes the growth of 

beneficial gut microbiota. This dual approach improves both 

phage therapy efficacy and gut health (Peng et al., 2019). 

 

Synergy with antibiotics: Phages can be used in 

conjunction with antibiotics to enhance therapeutic efficacy 

and mitigate the risk of developing antibiotic resistance. This 

synergistic approach can lead to improved treatment 

outcomes. In phage-antibiotic synergy, mainly antibiotics 

disrupt the bacterial structure and may increase bacterial 

susceptibility to phage infection. In addition, phages can 

disrupt biofilms allowing better antibiotic penetration, and 

the combination can re-sensitize antibiotic-resistant bacteria 

to drugs (Knezevic et al.2019; Luong et al., 2020). 

 

Phage-enhanced feed additives: Phages are often 

administered to animals orally as feed additives, in water, 

or via gavage. However, gavage is impractical, in intensive 

farming settings. Phages are unstable in the acidic 

environment of the stomach, which complicates oral 

delivery. To address this, studies recommend combining 

phages with buffering agents to enhance stability 

(Vandenheuvel et al., 2015).  

 

Ethical implications and analysis of bacteriophage 

therapy: The large-scale application of bacteriophage 

therapy raises several ethical and legal challenges that need 

to be addressed to ensure its safe and effective use. 

 

Safety Concerns: The use of live viruses as therapeutic 

agents raises significant biosafety issues, including the 

potential interactions between viral vectors and host 

organisms or the environment. Regulatory bodies must 

ensure that any bacteriophage used in therapy is well-

characterized and rigorously investigated to avoid harming 

patients (Merabishvili et al., 2019). 

 

Phage resistance: Just as bacteria can develop resistance 

to antibiotics, they can also become resistant to phages. 

This possibility necessitates careful management of phage 

application to prevent the emergence of phage-resistant 

bacterial strains (Labrie et al., 2010). 

 

Environmental impact: Phages are naturally occurring 

entities, but their widespread use could impact ecological 

systems. Research is needed to assess the long-term effects 

of phage therapy on environmental niches and ecosystems 

(Weinbauer, 2004). 
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Conclusion and future perspectives: This review 

highlights the significant challenges posed by bacterial 

diseases in poultry, exacerbated by the rise of AMR. 

Bacteriophage therapy emerges as a promising alternative 

to antibiotics, offering targeted action against harmful 

bacteria while preserving beneficial gut microbiota. 

Innovative delivery systems and encapsulation techniques 

further enhance the stability and effectiveness of phages in 

poultry applications. While promising field studies indicate 

the potential of phage therapy in reducing bacterial loads 

and improving poultry health, its successful 

implementation requires addressing ethical, safety, and 

regulatory concerns. With appropriate frameworks in 

place, phage therapy could play a vital role in advancing 

poultry disease management and mitigating the impact of 

AMR, ultimately leading to safer poultry products and 

improved public health outcomes. Future research should 

focus on refining bacteriophage delivery methods, ensuring 

regulatory approval, and assessing long-term safety. 

Investigating phage therapy's broader applications in 

poultry production and exploring its integration with other 

management strategies will be essential to maximize its 

potential and improve both animal health and food safety. 
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