

Pakistan Veterinary Journal

ISSN: 0253-8318 (PRINT), 2074-7764 (ONLINE) DOI: 10.29261/pakvetj/2025.294

RESEARCH ARTICLE

Epidemiological Investigation and Risk Assessment of Tick-Borne Encephalitis Virus in *Ixodes persulcatus*: Across Mongolia, And the China-Mongolia Border Regions

Qing Xin¹, Shan Gao^{2,#}, Yuxin Wang¹, Tumenjargal Sharav³, Saiji Lahu⁴, Feng Jiang^{1,5}, Jinguo Zhu⁵, Mingxuan Zhang⁵, Qin Dai⁵, Yu Jiang⁶, Xiaohu Han^{1,5*}, Zeliang Chen^{1,5*} and Hongwei Xin^{5*}

¹Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; ²Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, China; ³Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia; ⁴Tongliao centers for disease control and prevention, Tongliao, Inner Mongolia, 028000, People's Republic of China; ⁵Academician Workstation for Zoonoses and Biosafety, Manzhouli International Travel Health Care Center, Manzhouli, Inner Mongolia, China; ⁶Qingdao Harwars Biology Group Ltd Company, No.23, Wangjiang Road, West Coast New District, Qingdao City, Shandong Province, China

*Corresponding author: hxh8849@syau.edu.cn (Xiaohu Han); chzl@syau.edu.cn (Zeliang Chen); 4403668@qq.com (Hongwei Xing).

ARTICLE HISTORY (25-753)

Received: August 02, 2025 Revised: October 18, 2025 Accepted: October 21, 2025 Published online: November 10, 2025

Key words:

MaxEnt ecological niche model Mongolia Tick-borne encephalitis

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a significant zoonotic pathogen causing central nervous system infections. This study investigates the prevalence and distribution of TBEV in *Ixodes persulcatus* ticks along the China-Mongolia border, based on large-scale surveillance conducted from 2020 to 2023. We detected TBEV RNA in 7 out of 191 tick pools, with phylogenetic analysis revealing high genetic similarity between strains from China and Mongolia, indicating potential crossborder transmission. Ecological niche modeling (MaxEnt) identified high-risk areas extending beyond current PCR-positive sites, with precipitation and temperature as key environmental drivers of TBEV distribution. Our findings highlight a broader geographical spread of TBEV than previously recognized, emphasizing the need for enhanced surveillance and targeted preventive measures in underreported hotspots.

To Cite This Article: Xin Q, Gao S, Wang Y, Sharav T, Lahu S, Jiang F, Zhu J, Zhang M, Dai Q, Jiang Y, Han X, Chen Z and Xin H, 2025. Epidemiological investigation and risk assessment of tick-borne encephalitis virus in *Ixodes persulcatus*: across Mongolia, and the China-Mongolia border regions. Pak Vet J. http://dx.doi.org/10.29261/pakveti/2025.294

INTRODUCTION

Tick-borne encephalitis (TBE) is a zoonotic viral infection caused by the tick-borne encephalitis virus (TBEV), which primarily affects the central nervous system. The disease is transmitted through the bites of infected ticks, with *Ixodes persulcatus* being the primary vector in northern Asia and parts of Europe (Esser *et al.*, 2022). TBEV is a significant pathogen in regions including China, Mongolia, Russia, and parts of Europe, with an increasing incidence observed globally. The global incidence of TBE has risen from 0.4 to 0.9 cases per 100,000 individuals between 2015 and 2020 (Pustijanac *et al.*, 2023). However, the true number of clinical cases is likely higher, as many are unreported, especially in remote regions with limited surveillance. TBEV infections primarily occur through tick bites, though rare cases of

transmission have been linked to consumption of unpasteurized milk from infected livestock (Elbaz *et al.*, 2022).

TBEV exists in several subtypes, including European (TBEV-Eu), Siberian (TBEV-Sib), and Far Eastern (TBEV-FE), as well as two potential new subtypes: Himalayan (TBEV-Him) (Dai *et al.*, 2018) and Baikal Lake (TBEV-Bkl) (Demina *et al.*, 2010). The Siberian and Far Eastern subtypes are primarily transmitted by *I. persulcatus*, whereas the European subtype is transmitted by *Dermacentor reticulatus*. Mortality rates vary across subtypes, ranging from 1-2% for TBEV-Eu to 6-8% for TBEV-Sib and up to 40% for TBEV-FE (Saksida *et al.*, 2018).

The disease exhibits strict geographical confinement, with the European subtype predominantly found in Central and Western Europe, the Siberian subtype in Siberia and

Northern Europe, and the Far Eastern subtype in East Asia, including China and Japan (Lu *et al.*, 2008). Rising incidence and socioeconomic impacts have heightened global concern over TBE.

In recent years, the range of tick-borne diseases, including TBE, has expanded due to climate change, urbanization, and increased human-wildlife interactions. Ticks are ectoparasites of many vertebrates and serve as vectors for several human pathogens, including TBEV, Lyme disease bacteria, and Crimean-Congo hemorrhagic fever virus (CCHFV). Ticks are the second-largest vector group after mosquitoes (Lippi *et al.*, 2021).

In Mongolia, ticks are widely distributed across diverse ecosystems, from forests to grasslands and deserts, with the Selenge Province along the Mongolia-Russia border serving as a hotspot for tick-borne diseases (Frey *et al.*, 2012). Despite its high incidence, Mongolia faces significant challenges in controlling TBE due to underdeveloped surveillance systems and limited healthcare infrastructure (Ganbold *et al.*, 2023). Annually, Mongolia reports approximately 10,000 to 12,000 clinical cases of TBE, though the actual number is likely higher, given the reporting gap and limitations in diagnosis (World Health Organization, 2020).

The China-Mongolia border region represents a unique epidemiological area, with high tick populations and diverse environmental conditions that may influence TBEV transmission. However, the distribution of TBEV in this region remains poorly understood due to the lack of comprehensive, large-scale surveillance. In this context, the study of tick populations and TBEV prevalence is crucial for assessing the true extent of the disease and for identifying underreported areas at high risk.

This study investigates the prevalence and distribution of TBEV in *I. persulcatus* ticks across the China-Mongolia border region, with the hypothesis that TBEV is widely distributed and that climate factors, such as temperature and precipitation, play a significant role in shaping its geographic spread. By combining large-scale tick surveillance, phylogenetic analysis, and ecological niche modeling (MaxEnt), this research aims to assess the prevalence of TBEV in *I. persulcatus* populations, evaluate the genetic diversity of TBEV strains, and explore evidence of cross-border transmission between Mongolia and China. Additionally, the study examines the influence of environmental factors on TBEV distribution to identify high-risk areas for future outbreaks. The integration of these methods will provide critical insights into TBEV transmission patterns, enhancing our understanding of its ecological dynamics and supporting the development of more effective surveillance and control strategies in highrisk areas of the region.

MATERIALS AND METHODS

Sampling methodology: Ticks were collected from multiple sites across the China-Mongolia border region, including Inner Mongolia (China) and various provinces in Mongolia, between April 2020 and October 2023. A stratified random sampling approach was employed to ensure representative coverage of diverse ecological zones, including forested areas, grasslands, and regions with known high tick activity. Sampling was carried out both from environmental surfaces using cloth flags for passive

collection and from animal hosts using tweezers for active tick collection. Hosts were selected based on their potential exposure to ticks, including domestic livestock and wild animals commonly found in the region, allowing for a comprehensive representation of ticks from both wildlife and domesticated species. To ensure accurate spatial representation, GPS coordinates were recorded for each collection site, facilitating the mapping of tick distributions and the subsequent ecological niche modeling using MaxEnt. All spatial data were processed in ArcGIS and converted to ASCII raster format for further analysis.

RNA extraction: Tick samples were transported at 4°C, washed with PBS, labeled, and stored at -80°C in RNase-free tubes. Samples from identical locations/times were pooled (10 ticks/pool), homogenized in 600 μ L PBS with beads at 4°C, and processed using the EasyPure® Virus DNA/RNA Kit for nucleic acid extraction. Extracted nucleic acid was reverse-transcribed into cDNA.

Tick species identification: Tick species identification was conducted using both morphological and molecular biological methods.

Morphological identification: Ticks were cleaned with 75% alcohol, dried, and key features (dorsal/ventral views, capitulum, palps, anal groove, spiracles, genital openings, Haller's organs, coxae) were examined under a stereomicroscope following SN/T 5337-2021 (Standardization Administration of China, 2021).

Molecular biological identification: Species-specific COI primers (Table 1) were used under PCR conditions: 95°C 5 min; 40 cycles of 95°C 30 s, 50°C 30 s, 72°C 60 s; final extension 72°C 10 min. PCR products were sequenced by Sangon Biotech (Shanghai).

Metagenomic sequencing and analysis: RNA was extracted using QIAamp Viral RNA Mini Kit. Ribosomal RNA was depleted with KAPA RNA HyperPrep Kit with RiboErase (Roche). cDNA synthesis used miScript II RT Kit. Libraries were constructed via end repair, adapter ligation, and PCR amplification. Quality was assessed by Qubit, Qseq100, and KAPA Library Quantification. Libraries were circularized into DNBs and sequenced on MGISEQ-2000 (PE150).

PCR detection: TBEV primers (Table 1) were designed based on metagenomic data and Ma Hongyu et al. (Ma, 2017). PCR conditions: 95°C 3 min; 32 cycles of 95°C 15 s, 53°C 15 s, 72°C 69 s; final extension 72°C 5 min.

Table 1: Sequences of primers used in the study

Table 1: Sequences of primers used in the study						
Primer	Sequence (5'-3')	Amplicon Size				
Name		(bp)				
CO I -F	GGTCAACAAATCATAAAGATATTGG	670				
CO I -R	TAAACTTCAGGGTGACCAAAAAATCA	670				
TBEV-F	GGTRYTGGARCTGGGDGGATGR	1150				
TBEV-R	GCGTGYTCTCCKATCACTGTCA	1150				

Sequence comparison and genetic evolution analysis: ORF amino acid sequences of Chinese/Mongolian TBEV E proteins were aligned against NC_001672.1 using ESPript 3.0(Robert,Gouet, 2014). Full TBEV sequences from NCBI

(with time/location data) were aligned in MEGA11 (Clustal W). A maximum likelihood phylogenetic tree was constructed and visualized via iTOL (https://itol.embl.de/)(Letunic,Bork, 2024).

Spatial modeling data collection: TBEV outbreak and *I. persulcatus* distribution records in Mongolia/China-Mongolia border areas were sourced from fieldwork, literature, books, and databases (NCBI, Web of Science). Environmental predictors (climate, terrain, vegetation) were selected. All spatial data were converted to ASCII raster format (30 arc-seconds/km, UTM-WGS-1984).

Spatial distribution model analysis: Ecological niches of *I. persulcatus* and TBEV were modeled separately and overlaid. Spatial autocorrelation was minimized using SDM toolbox v1.1c (ArcGIS 10.2) for spatial thinning (gradient distances: 10–150 km). Principal component analysis (SPSS 22.0) screened predictors (eigenvalues>0.85), reducing multicollinearity. MaxEnt eliminated low-contribution/high-SD variables. Variance inflation factor (VIF<10) confirmed no multicollinearity. Distribution records and environmental data for TBEV and *I. persulcatus* were modeled in MaxEnt (75% training, 25% testing; random seed). Non-collinear low-contribution/high-SD variables were excluded. Risk layers were overlaid (ArcGIS Fuzzy Overlay) to generate the

final TBE risk map. Model accuracy was evaluated by ROC curve/AUC (>0.8 = good; >0.9 = excellent; Table 2).

RESULTS

Tick collection: A total of 12,800 ticks were collected in Inner Mongolia Autonomous Region of China, and 22,000 ticks were collected from 10 provinces in Mongolia. The collection details for different locations are provided in S1.

Tick species identification: Morphologically intact ticks collected from China and Mongolia were identified according to the Chinese Technical Specification for Identification of Tick Species. Five tick species were collected in northern China's border regions: Dermacentor silvarum, Haemaphysalis longicornis, Dermacentor japonicus, Haemaphysalis concinna, and I. persulcatus. Six tick species were collected in Mongolia: Dermacentor nutalli, Hyalomma Asiaticium, D. silvarum, Dermacentor marginatus, I. persulcatus, and Dermacentor nivenus. Detailed morphological characteristics of ticks collected from various locations are provided in S2.

A total of 34,800 ticks were collected from northern China's border regions and Mongolia. All samples were detected using PCR, and sequencing results were verified using blast. The tick species collection is shown in Fig. 1.

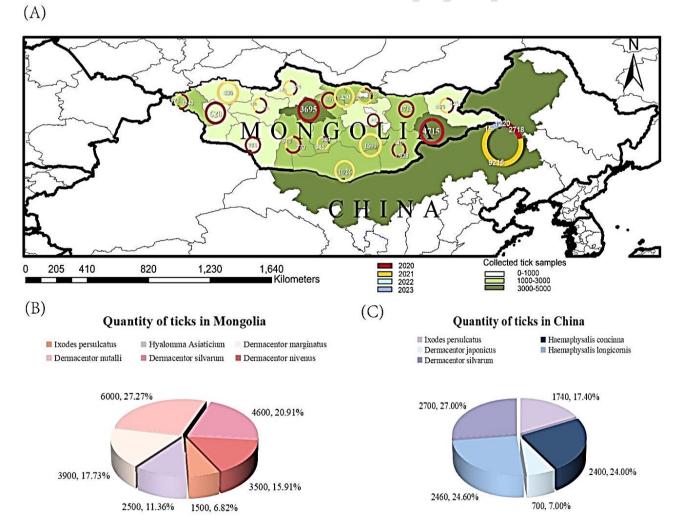


Fig. 1: Tick species collection in inner Mongolia autonomous region of China and Mongolia. Note:(A) the number of ticks collected in different regions of China and Mongolia from 2020 to 2023; (B) the species and number of ticks collected in Mongolia; (C) the species and number of ticks collected in China.

Table 2: Data layer and source, raster/vector, value range/categories (Number of subcategories in brackets) and specification of unit of

measurement/impact (proxy)

Layer	Source	Туре	Value/categories	Measurement unit	
Climate					
Prec I-I2	worldclim	Raster	0 to 275 mm/month	Precipitation	
Temp I-12	worldclim	Raster	-32.6 to 37.3°C	Mean Temperature	
Tmin I-12	worldclim	Raster	-37.3 to 30.5°C	Minimum Temperature	
Tmax I-12	worldclim	Raster	-27.9 to 43.6°C	Maximum Temperature	
Bio 1-19	worldclim	Raster		Bio I mean annual temperature	
				Bio 2 Monthly mean value of temperature difference between day and	
				night	
				Bio 3 ratio of day / night temperature difference to annual temperature	
				difference	
				Bio 4 Seasonal change in temperature	
				Bio 5 The hottest month is the hottest	
				Bio 6 The coldest month is the coldest temperature	
				Bio 7 Annual temperature variation range	
				Bio 8 The wettest quarterly average temperature	
				Bio 9 Dryer quarterly average temperature	
				Bio 10 Warmest quarterly average temperature	
				Bio 11 The coldest quarterly average temperature	
				Bio 12 Mean annual precipitation	
				Bio 13 The wettest month of precipitation	
				Bio 14 Precipitation in the most dry months	
				Bio 15 Precipitation seasonality	
				Bio 16The wetest quarterly precipitation	
				Bio 17 Dryest quarterly precipitation	
				Bio 18The warmest quarterly precipitation	
				Bio 19 Precipitation in the coldest quarter	
Terrain					
Elevation			-10 to 8844 m a.s.l	Climbing distance	
Slope	ASTER-GDEM	Raster	0 to 88.2°		
Vegetation					
Land cover	ESA Vector		tor Cropland(3), Herbaceous(1), Tree(9), Shrubland(3), Animal food and refuge		
Grassland(1), Urban areas(1), Bare areas(2), Water					
-			bodies(1), Permanent snow and ice(1)		

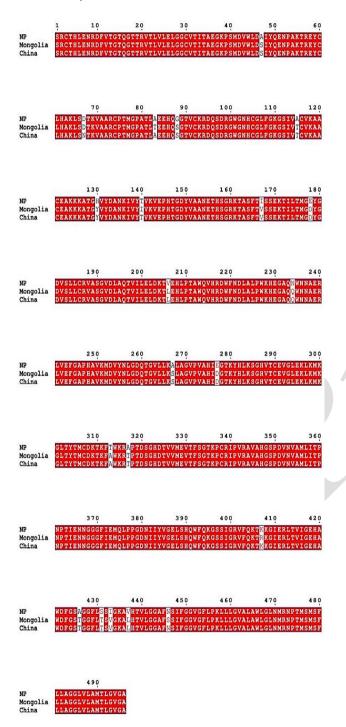
Results of metagenomic sequencing: Metagene sequencing revealed 155 archaea, 3757 bacteria, 1279 eukaryotes and 354 viruses in the tick DNA samples. Seven archaea, 582 bacteria, 192 eukaryotes, and 88 viruses were present in the RNA samples. It is worth noting that high abundance of TBEV was found in tick samples from Inner Mongolia Autonomous Region of China and Selenge Province and Bulgan Province of Mongolia, with sequencing lengths of 11055 bp and 11330 bp, respectively. The e-value was 0 and the amplified sequence contrast similarity was 98%, indicating extremely high sequence comparison confidence, indicating the presence of forest encephalitis virus in ticks in China-Mongolia border areas. Therefore, in this study, PCR testing was performed for I. persulcatus in these two regions to determine the prevalence of TBEV.

Positive rate of TBEV in different tick species: Tick samples collected from the Aershan region of Inner Mongolia Autonomous Region and Mongolia were classified based on their sampling locations and tick species. PCR technology was used to randomly select samples for TBEV detection. A target band of nearly 1000 bp was detected, consistent with the expected 1150 bp band. Notably, all positive samples were *I. persulcatus*. DNA sequencing confirmed that the amplified fragments indeed originated from TBEV. The results showed that the TBEV positivity rate in Mongolia was 0.75% (1/133), while in the northern part of China bordering Mongolia, it was 10.34% (6/58) (Table 3). Detailed information on the positive rate in different regions is shown in Table 4.

Sequence comparison of E protein of forest encephalitis virus: This study conducted a comparative sequence analysis of the TBEV E protein from Chinese and Mongolian strains, using the NCBI reference sequence (NC_001672.1) as the standard. Alignment identified 19 amino acid substitution sites, all representing non-synonymous mutations (Fig. 2):

Table 3: Positive rates of different ticks

Species	Positive rates
D. nutalli	0%
H. Asiaticium	0%
D. nivenus	0%
D. marginatus	0%
I. persulcatus	3.66%
D. silvarum	0%
H. longicornis	0%
D. japonicus	0%
H. concinna	0%


 Table 4: Positive rates of TBEV in various regions of China and

 Mongolia

Mongolia					
Country	Province	Regions	Tick pool	Positive	Positive
			numbers	pool	rates
China	Inner Mongolia	Arshan	58	6	10.34%
	Autonomous Region	City			(6/58)
Mongolia	Bulgan	Khangal	2	0	0.75%
	Selenge	Bugant	8	0	(1/133)
		Khuder	3	0	
		Altanbulag	45	0	
		Yeroo	75	1	

The T313A (Thr→Ala) and A317T (Ala→Thr) substitutions within the IgG-like fold domain may modulate host cell binding specificity by altering surface topology. This could impact receptor-binding capacity and potentially confer cross-species transmission potential. The Mongolian

strain-specific N446S (Asn—Ser) substitution occurs at the periphery of transmembrane helix TM1. Increased side-chain polarity at this position may compromise membrane-anchoring efficiency. This mutation likely represents adaptive optimization in the primary host, resulting in attenuated virulence while enhancing transmission sustainability.

Fig. 2: Sequence comparison of E protein of TBEV. Note: NP: NCBI reference sequence for TBEV NC_001672.1.

Results of the genetic evolution analysis: The phylogenetic tree reveals that the sequences obtained from China (PV568693) and Mongolia (PV568692) belong to the Siberian subtype of TBEV, with close genetic relationships and a similarity of 97.35%. Additionally, these sequences

share an extremely close relationship with a 2011 TBEV strain (ID: KF823822) from Irkutsk, Russia, with a similarity of 97.15% (Fig. 3). The high similarity of these viral sequences suggests potential transmission across regions through animal migration, human activities, tick dissemination, or other means.

Spatial model records and selection of predictor variables: From previous studies, TBEV and *I. persulcatus* geographical distribution records were selected. After screening, 89 TBEV and 334 *I. persulcatus* records were included for subsequent analysis. The pairwise distances between records were set at 40 km and 80 km, respectively. After PCA and MaxEnt elimination of variables with low contribution values, December precipitation (prec 12) and November maximum temperature (temp 11) were ultimately used to construct the final TBEV model. January precipitation (prec 1), September precipitation (prec 9), and August minimum temperature (tmin 8) were used to construct the final *I. persulcatus* model (Table 5). Multicollinearity tests indicated VIF values of 0-2 (<10), indicating no detected multicollinearity among predictors.

Spatial models for TBEV and *I. persulcatus***:** The average output of 10-fold cross-validation for the TBEV SDM indicated high training and testing AUC values with low standard deviations (0.820; 0.023). Similarly, the *I. persulcatus* SDM showed high training and testing AUC values with low standard deviations (0.809; 0.030), indicating good prediction performance and validating the robustness of the models. These models can be used for TBE risk assessment (Fig. 4).

The bell-shaped response curves indicate that the probability of TBEV occurrence is highest when the average December precipitation is 5-10 mm and the average November temperature is between -10°C and -5°C. Concurrently, the probability of *I. persulcatus* occurrence is highest when the average January precipitation is 0-10 mm, the average September precipitation is 0-50 mm, and the August minimum temperature is 15-20°C (Fig. 5).

Spatial risk of TBEV carried by *I. persulcatus*: Layer overlay analysis revealed high TBE transmission risks in Selenge, Darkhan, Uvs, and Zavkhan provinces in northern Mongolia, with Selenge Province having the highest risk level. In China, the highest TBE risks are in the northwest and northeast, primarily around the Greater and Lesser Khingan Ranges and the Changbai Mountains. There is also a risk of TBE along the China-Mongolia, Sino-Russian, and Mongolian-Russian borders. Overall, the occurrence of TBE is mainly influenced by meteorological factors (Fig. 6).

The cartographic representation was developed with spatial data outputs produced by the MaxEnt algorithm through ArcGIS 10.6 platform. Geopolitical boundaries were sourced from the Natural Earth public domain dataset (http://www.naturalearthdata. com/), serving generalized representation of national spatial relationships. This visualization contains no legally binding geographic information and specifically cautions against reinterpretation or republication for jurisdictional, territorial, or sovereignty-related contexts.

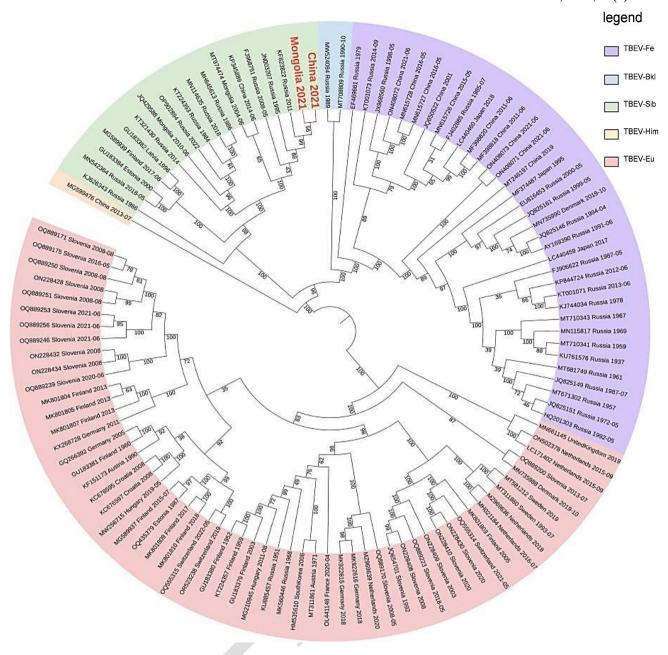


Fig. 3: TBEV phylogenetic tree with complete sequence.

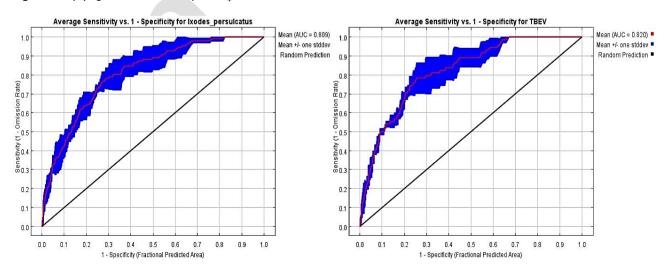


Fig. 4: Average sensitivity and specificity curves of the TBEV and *I. persulcatus* MaxEnt model. Note: The left figure shows the average sensitivity and specificity curve for the TBEV model, and the right figure shows the curve for the I. persulcatus model. The curves display the average response (red) and its average standard deviation (blue) from repeated runs in the MaxEnt model.

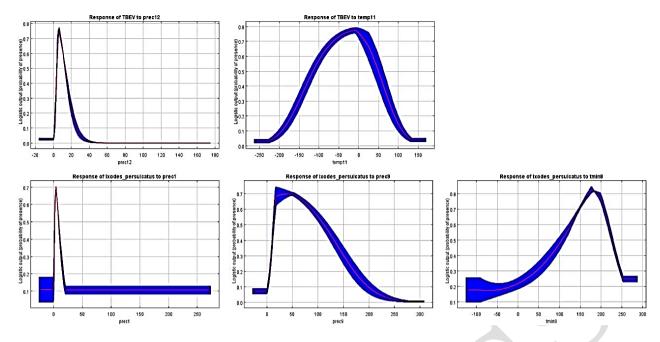


Fig. 5: Bell-shaped response curves of environmental drivers affecting TBEV and I. persulcatus. Note: (a) TBEV response curve (b) I. persulcatus response curve. The curves show the average response value (red) and its average standard deviation (blue) from repeated runs in the MaxEnt model. prec12: December precipitation, temp11: November average temperature, prec 1: January precipitation, prec 9: September precipitation, tmin 8: lowest temperature in August.

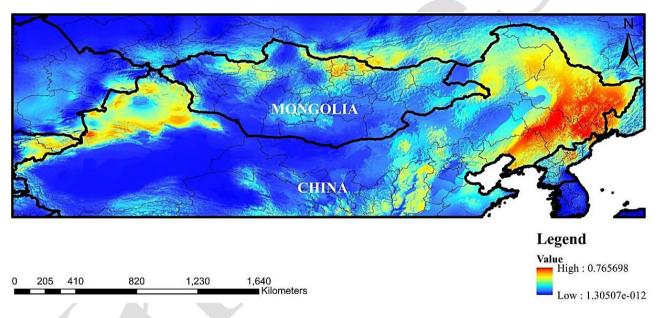


Fig. 6: Probability of TBE occurrence in high-risk areas. Note: Suitability for TBEV across the research area. The map depicts the suitability range for TBEV in China and Mongolia. Red represents the highest and blue the lowest suitability.

DISCUSSION

This study provides the first cross-border, large-scale investigation of *I. persulcatus* and TBEV in the China-Mongolia border region. By combining molecular screening, phylogenetic analysis, and ecological niche modeling, we explored the circulation patterns of TBEV in local tick populations and identified key environmental factors shaping its distribution. These findings help fill important gaps in our understanding of TBEV ecology in this region and raise new concerns about its potential spread under changing climate conditions.

Our results show that TBEV was mainly detected in *I. persulcatus* ticks and belonged to the Siberian subtype. The viral sequences shared over 97% identity with strains from

Irkutsk, Russia, suggesting possible transboundary transmission, likely driven by wildlife migration, human activity, or tick dispersion(Haemig *et al.*, 2011; Li *et al.*, 2015). Sequence variation within receptor-binding regions further points to potential changes in viral fitness or host tropism. These observations provide new insight into the local evolution of TBEV and offer clues for tracking its geographic spread.

This study detected a considerable TBEV positivity rate in the China-Mongolia border region (0.75% in Mongolia and 10.34% in China). Furthermore, the region's rich wildlife diversity, coupled with the migration of migratory birds and wild animals, poses a significant risk for cross-border transmission of tick-borne encephalitis virus. Niche modeling identified December precipitation and November

temperature as significant predictors of TBEV presence, consistent with previous reports linking TBEV maintenance to temperate forest environments(Wang *et al.*, 2023).

Overlaying the predicted distributions of *I. persulcatus* and TBEV revealed strong spatial overlap, underscoring the central role of this tick species in TBEV transmission. The tick's distribution was mainly shaped by January and September precipitation and the minimum temperature in August, indicating its sensitivity to climate variables (Chen *et al.*, 2019). These findings are consistent with recent observations from Europe showing that warmer temperatures have facilitated the expansion of tick habitats and the rise of TBE incidence (Lindgren *et al.*, 2001; Randolph, 2008; Voyiatzaki *et al.*, 2022).

Given the limited healthcare infrastructure and passive surveillance in parts of Mongolia, the true extent of TBEV circulation may be underestimated (Baasandavga *et al.*, 2019; Cerny *et al.*, 2019; Ganbold *et al.*, 2023). The identification of ecologically suitable areas with limited monitoring suggests that current surveillance may be missing a significant portion of the virus's spread.

Conclusions: Our study demonstrates the critical yet underrecognized expansion of TBEV transmission risk in the China-Mongolia border region, driven by climate change, land-use shifts, and cross-border viral spread. The integration of large-scale tick surveillance with ecological niche modeling reveals wider TBEV distribution than previously documented, exposing gaps in current monitoring systems. Importantly, phylogenetic evidence confirms active cross-border TBEV circulation, emphasizing the urgent need for transnational One Health strategies to mitigate outbreak risks. Given the rapid environmental and anthropogenic changes fueling tick-borne disease emergence, sustained surveillance, real-time data sharing, and joint prevention policies must be prioritized to safeguard the public health security of the local people.

Acknowledgments: Not applicable.

Contributors: Qing Xin and Shan Gao wrote the manuscript. Qing Xin and Xiaohu Han conceived the study. Yuxin Wang carried out the testing of the samples. Tumenjargal Sharav, Feng Jiang, Saiji Lahu and Xiaohu Han performed sample collection and collated the data. Jinguo Zhu and Mingxuan Zhang edited the pictures. Qin Dai and Yu Jiang participated in the literature search. Xiaohu Han, Zeliang Chen and Hongwei Xin revised and edited the manuscript. Thanks to all the above authors for their great contributions to the editing and creation of the manuscript.

Funding: This study was supported by the National Key R&D Program of China (2022YFC2302700) and the Science and Technology Partnership Program of the Ministry of Science and Technology of China (KY201901014).

Availability of data and materials: All data and codes supporting the findings of this study are derived from open databases.

Ethical approval: Not applicable.

Declaration of competing interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- Baasandavga U, Badrakh B, Burged N, et al., 2019. A case series of fatal meningoencephalitis in Mongolia: Epidemiological and molecular characteristics of tick-borne encephalitis virus. Western Pacific Surveillance and Response Journal, 10(1): 25-31. DOI 10.5365/wpsar.2018.9.1.003.
- Cerny J, Buyannemekh B, Needham T, et al., 2019. Hard ticks and tick-borne pathogens in Mongolia-a review. Ticks and Tick-borne Diseases, 10(6). DOI 10.1016/j.ttbdis.2019.101268.
- Chen XJ, Li F, Yin QK, et al., 2019. Epidemiology of tick-borne encephalitis in China, 2007-2018. PLOS ONE, 14(12). DOI 10.1371/journal.pone.0226712.
- Dai X, Shang G, Lu S, et al., 2018. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-tibet plateau, China. Emerging Microbes & Infections, 7(1):1-9. DOI 10.1038/s41426-018-0081-6
- Demina TV, Dzhioev YP, Verkhozina MM, et al., 2010. Genotyping and characterization of the geographical distribution of tick-borne encephalitis virus variants with a set of molecular probes. Journal of Medical Virology, 82(6):965-976. DOI https://doi.org/10.1002/jmv.21765.
- Elbaz M, Gadoth A, Shepshelovich D, et al., 2022. Systematic review and meta-analysis of foodborne tick-borne encephalitis, Europe, 1980–2021. Emerging Infectious Diseases, 28:1945 1954.
- Esser H, Lim S, de Vries A, et al., 2022. Continued circulation of tick-borne encephalitis virus variants and detection of novel transmission foci, the Netherlands. Emerging Infectious Disease Journal, 28(12):2416. DOI 10.3201/eid2812.220552.
- Frey S, Mossbrugger I, Altantuul D, et al., 2012. Isolation, preliminary characterization, and full-genome analyses of tick-borne encephalitis virus from Mongolia. Virus Genes, 45(3):413-425.
- Ganbold D, Uudus B, Nyamdavaa N, et al., 2023. Seroprevalence and risk factors of tick-borne encephalitis in Mongolia between 2016 and 2022. Parasite Epidemiology and Control, 22:e00318.
- Haemig PD, Sjöstedt de Luna S, Grafström A, et al., 2011. Forecasting risk of tick-borne encephalitis (TBE): Using data from wildlife and climate to predict next year's number of human victims. Scandinavian Journal of Infectious Diseases, 43(5):366-372.
- Letunic I and Bork P, 2024. Interactive tree of life (itol) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(WI): W78-W82. Available from https://doi.org/10.1093/nar/gkae268 [Accessed 6/5/2025]. DOI 10.1093/nar/gkae268.
- Li Y, Wang J and Gao M, 2015. Geographical detection of Tick-borne Encephalitis risks in Hulunbuir, China. 2015 23rd International Conference on Geoinformatics, Wuhan, China, 2015, pp. 1-7, DOI: 10.1109/GEOINFORMATICS.2015.7378702.
- Lindgren, Elisabet, Gustafson, et al., 2001. Tick-borne encephalitis in Sweden and climate change. Lancet, 358(9294):1731-1732. DOI 10.1016/S0140-6736(01)06754-X.
- Lippi CA, Ryan SJ, White AL, et al., 2021. Trends and opportunities in tick-borne disease geography. Journal of Medical Entomology, 58(6):2021-2029. DOI 10.1093/jme/tjab086.
- Lu Z, Brker M, Liang G, 2008. Tick-borne encephalitis in mainland China. Vector borne and zoonotic diseases (Larchmont, N.Y.), 8(5):713-720. DOI https://doi.org/10.1089/vbz.2008.0028.
- Ma H, 2017. Discovery and identification of new viruses in ticks from northeastern China (in Chinese) (Master's thesis). Jilin Agricultural University, Jilin, China.
- Pustijanac E, Buršić M, Talapko J, et al., 2023. Tick-borne encephalitis virus: A comprehensive review of transmission, pathogenesis, epidemiology, clinical manifestations, diagnosis, and prevention. Microorganisms, 11(7). DOI 10.3390/microorganisms11071634.
- Randolph SE, 2008. Tick-borne encephalitis incidence in central and eastern Europe: Consequences of political transition. Microbes and Infection, 10(3): 209-216. DOI https://doi.org/10.1016/j.micinf.2007.12.005.
- Robert X and Gouet P, 2014. Deciphering key features in protein structures with the new endscript server. Nucleic Acids Research, 42(W1): W320-W324. Available from

- https://doi.org/10.1093/nar/gku316 [Accessed 6/5/2025]. DOI 10.1093/nar/gku316.
- Saksida A, Jakopin N, Jelovšek M, et al., 2018. Virus RNA load in patients with tick-borne encephalitis, Slovenia. Emerging Infectious Disease journal, 24(7):1315. DOI 10.3201/eid2407.180059.
- Standardization Administration of China, 2021. Quarantine protocol for species identification for tick vectors transmitting animal diseases (SN/T 5337-2021).
- Voyiatzaki C, Papailia SI, Venetikou MS, et al., 2022. Climate changes exacerbate the spread of *Ixodes ricinus* and the occurrence of lyme borreliosis and tick-borne encephalitis in europe-how climate
- models are used as a risk assessment approach for tick-borne diseases. International Journal of Environmental Research and Public Health, 19(11): 6515. DOI 10.3390/ijerph19116516.
- Wang S-S, Liu J-Y, Wang B-Y, et al., 2023. Geographical distribution of lxodes persulcatus and associated pathogens: Analysis of integrated data from a China field survey and global published data. One Health, 16:100508. DOI https://doi.org/10.1016/j.onehlt.2023.100508.
- World Health Organization, 2020. Immunization is the best protection against tick-borne encephalitis. https://www.who.int/news/item/19-02-2020-immunization-is-the-best-protection-against-tick-borne-encephalitis

