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The gut microbiota is closely associated with a variety of gastrointestinal diseases.
However, there is no clear relationship between gut microbiota and diarrhea in yaks.
Here, we investigated the effect of diarrhea on the gut microbiota of yaks. Results
showed that diarrhea greatly reduced the diversity of gut fungi but had no significant
effect on gut bacteria. Additionally, the relative abundance of specific bacterial and
fungal taxa differed significantly between healthy and diarrheal yaks. A total of 20
genera were significantly increased in the gut bacterial community of diarrheic yaks
compared to the healthy yaks, while the relative abundance of 2 phyla and 10 genera
has significantly decreased. Fungal taxonomic analysis showed that the relative
abundance of 1 phylum and 62 genera has significantly increased in the diarrheic yaks
compared to the healthy yaks, while the relative abundance of 7 phyla and 123 genera
has significantly decreased. In summary, this study demonstrated the negative impact
of diarrhea on the gut microbiota homeostasis of yaks. Furthermore, this research
contributes to the understanding of the characteristics of gut microbiota in plateau
yaks, thus laying the foundation for protection of yak health and relieving diarrhea
from the microbial perspective.
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INTRODUCTION

A host gut harbors approximately 100 trillion
microorganisms, and their genetic materials are 150 times
more abundant than the genetic materials of the host genome
(Bian et al., 2025). These microorganisms maintain a
complex ecological balance that participates fundamentally
in maintaining host homeostasis (Hou et al., 2025). For
example, the gut microbiome takes part in various biological
activities in the host, including nutrient metabolism and the
processes of digestion and absorption (Li et al., 2025).
However, gut microbiota is easily influenced to change by
internal and external factors. Common internal influencing
elements are age, gender, and genetics (Wang et al., 2022).
Exercise, diet, and environmental pollutants-microplastics,

antibiotics, and heavy metals-are also key driving factors that
affect gut microbiota and even disturb gut microbial
homeostasis (Zhang et al., 2022; Chang et al., 2025). The
severity of this dysbiosis corresponds closely with many
diseases, from minor cramps, diarrhea, and constipation to
serious colorectal cancer (Hu et al., 2022; Adil et al., 2023;
Mehnaz et al., 2023).

Diarrhea is a prevalent public health problem in animal
husbandry. It seriously threatens animal welfare and causes
huge economic losses (Quintero ef al., 2019). Studies have
shown that diarrhea not only decreases productivity but
also has a negative impact on milk production and immune
function (Liu et al., 2024). Moreover, it was known as a
main cause of death among newborn animals. It was
demonstrated that 39% of deaths occurring within three
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weeks after birth were due to diarrhea. The causes of
diarrhea are very complicated and come from different
factors, such as bacteria, viruses, parasites, and fungi.
Among these etiological agents, bacterial infections
represent the most common and pose serious health risks,
particularly in calves. Although many measures have been
carried out to prevent diarrhea in calves, obvious
improvement has not been achieved so far. Therefore,
exploring the causes of diarrhea plays a very significant
role in effective therapy and prevention. Recent research
increasingly implicates gut microbial dysbiosis as a central
mechanism in calf diarrhea (Hui et al., 2020; Wang et al.,
2024).

Yaks are an essential source of meat and make a huge
contribution to the economic, social, and cultural
development in the Tibetan region (Li et al., 2023; Ni et
al., 2025). Yak meat possesses favorable nutritional
characteristics, including highly palatable, high protein
content, low fat content and elevated micronutrient density,
aligning with contemporary dietary preferences (Wang et
al., 2022). In contrast with traditional beef, the fat content
of yak meat was as low as 3%-5%, and its protein content
is higher than beef. Furthermore, it has a high level of
essential amino acids and trace elements, which are vital in
human nutrition, and can be used to improve conditions
such as anemia and immune function (Zhao et al., 2025).
However, yak populations are susceptible to
gastrointestinal and nutritional disorders. This may have
contributed to relatively small population of yaks globally.
There are about 16.02 million yaks in China, accounting for
about 90% of the global yak population, according to
statistics. Diarrhea is one of the important diseases causing
death in yaks and restricting the development of the yak
industry. Although a variety of diarrhea prevention
measures against yaks have been implemented, little
outcome has been achieved so far. Recently, there has been
increasing awareness of the key link between gut
microbiota and gastrointestinal diseases. For example,
Wang et al. (2023) found that diarrhea significantly
disturbed the composition and structure of gut microbiota
in Beigang pigs. Li et al. (2021) also observed gut
microbial dysbiosis in diarrheal giraffes, and that diversity
and abundance of beneficial bacteria changed greatly.
However, no study has been conducted to explore the
changes in diarrheal yaks. Therefore, we assume that
diarrhea could result in significant changes in the gut
microbiota of yaks.

MATERIALS AND METHODS

Sample Collection: A total of 12 yaks, 6 apparently
healthy ones and 6 that had diarrhea, were selected for this
study. These were nearly 2-year-old yaks. All the yaks
belonged to the same commercial feedlot and received an
identical diet and habitat. No medication had been given to
the diarrheic yaks. Fecal samples were collected from the
middle section of the feces using a sterile sampler to
minimize surface contamination. Finally, the fecal samples
from each yak were placed in cryovials for subsequent
analysis.

Analysis of the gut microbiota: The sequencing and
analysis of the gut microbiota were conducted based on

Pak Vet J, 2025, 45(4): 1650-1661.

previous research (Li et al., 2021). In short, DNA was
extracted from each fecal sample using a commercial kit.
After ensuring its quality, PCR amplification was
performed using universal primers (338F: ACTCCTACG
GGAGGCAGCAG-3 and 806R: GGACTACHVGGGTW
TCTAAT). Subsequently, we performed quality control of
the PCR amplification products, sequencing library
construction, and paired-end sequencing. Microbial
diversity was calculated based on the number of OTUs in
each sample. Furthermore, differences in microbial
composition were visualized using LEfSe and Metastats
analysis. Data are expressed as mean = SD, and the
threshold for differential bacterial taxa was set at P<0.05.

RESULTS

Data Acquisition and Analysis: We conducted amplicon
sequencing on the collected fecal samples, resulting in
800,085 original bacterial sequences (HA=399,827,
DA=400,258, ranging from 79,882 to 80,232) and 799,626
original fungal sequences (HA=399,663, DA=399,963,
ranging from 79,672 to 80,298) (Table 1, 2). In addition,
these raw data were further filtered and 460,377
(HA=229,287, DA=231,090, ranging from 42,980 to
49,638) wvalid Dbacterial sequences and 600,879
(HA=287,555, DA=313,324, ranging from 54,692 to
64,260) valid fungal sequences were obtained. These valid
sequences were subsequently clustered into 5,425
(HA=3,115, DA=3,287, ranging from 800 to 952) bacterial
OTUs and 7,520 (HA=4,815, DA=3,557, ranging from 800
to 1,302) fungal OTUs, based on sequence similarity (Fig.
1A, B, C, G, H, I). Specifically, the gut bacterial
community comprised 2,138 individual OTUs in the HA
and 2,310 in the DA. Similarly, the gut fungal community
exhibited 3,963 individual OTUs in the HA and 2,705 in
the DA. Notably, we also identified 977 core bacterial
OTUs and 852 core fungal OTUs. The results of rarefaction
curve showed that the sequencing depth was adequate (Fig.
ID,E,F,J,K, L).

Diarrhea changed the gut microbial diversity of yaks:
The Chaol, ACE, Simpson, and Shannon indices for the
HA were 898.39, 896.21, 0.99 and 8.58, while these indices
for the DA were 908.43, 905.29, 0.99 and 8.52,
respectively (Fig. 2A, B, C, D). There are no obvious
differences in the Chaol (898.39£20.85 versus
908.43+28.70, P>0.05), ACE (896.21+19.74 versus
905.29+28.07, P>0.05), Simpson (0.99+0.0009 versus
0.99+£0.0019, P>0.05), and Shannon (8.58+0.089 versus
8.52+0.072, P>0.05) indices of gut bacterial community
between the HA and DA. Moreover, the Chaol, ACE,
Shannon, and Simpson indices for the gut fungal
community in the HA were 1173.59, 1169.95, 7.84, and
0.98, while those in the DA were 982.23, 976.25, 7.17, and
0.96, respectively (Fig 2E, F, G, H). Comparative analysis
demonstrated that the Chaol (1173.59+£34.74 versus
982.23+59.15, P=0.029), ACE (1169.95+£35.00 versus
976.25+60.61, P=0.03), Simpson (0.98+0.0044 versus
0.96+0.0029, P=0.017), and Shannon (7.84+0.32 versus
7.17+0.17, P=0.016) indices for the HA were significantly
higher than those for the DA, indicating that diarrhea
significantly reduces the diversity and abundance of gut
fungal community. Furthermore, the PCoA plot based on
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beta diversity showed that the samples from both the HA
and DA clustered together in the gut bacterial community,
whereas a separation trend was observed in the gut fungal
community (Fig. 21, J, K, L). This suggests that diarrhea
has a more pronounced impact on the structure of gut
fungal community.

Diarrhea changed the gut bacterial composition of
yaks: At the phylum level, the Firmicutes (52.52%),
Bacteroidota (35.83%) and Spirochaetota (4.40%) were
the three most dominant phyla in the DA (Fig. 3A).
Meanwhile, the bacterial phyla in HA were predominated
by Firmicutes (58.49%), Bacteroidota (35.22%) and
Verrucomicrobiota (2.34%) in descending order. Other
phyla such as Actinobacteriota (0.34%, 0.41%),

Cyanobacteria (0.48%, 0.19%), Desulfobacterota (0.14%,
0.45%) and Elusimicrobiota (0.052%, 0.09%) in HA and
DA were found in low concentrations. At the genus level,
Rikenellaceae RC9 gut group

UCG 005  (14.10%),

seaesaii

Multi Samples Rarefaction Curves
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(9.47%) and unclassified Lachnospiraceae (8.71%) were
abundantly found in the HA (Fig 3B). Moreover,
UCG_005 (11.69%) was the most dominant bacteria,
followed by Rikenellaceae RC9 gut group (7.70%) and
unclassified UCG 010 (6.88%) in DA. Moreover, the
abundance distribution of dominant fungi between the HA
and DA could be visualized by clustered heatmaps (Fig.
30).

At the phylum level, Firmicutes and Cyanobacteria were
significantly more preponderant in the HA than in the DA
(Fig.4A). Moreover, a comparison of the DA and HA groups
indicated a significant reduction in the abundance of 10
(Prevotellaceae_Ga6Al group, Lachnospiraceae NK3A420

_group, Bacteroides, unclassified_Prevotellaceae,
Rikenellaceae RC9 gut group, Defluviitaleaceae UCG
011, uncultured_Clostridium_sp, Atopobium,

Ruminococcus and Dorea) genus and a significant increase
in the abundance of 20 (Anaerovorax, unclassified
Paludibacteraceae, uncultured Bacteroidales bacterium,
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Fig. 1: OTUs count and sequencing depth assessment. A, B, C, G, H, I: Venn diagram. D, E, F, }, K, L: Rarefaction curves.
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Cluster heatmap.
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Fig. 4: Statistical analysis of significantly different intestinal bacterial phyla (A) and genera (B) associated with yak diarrhea.
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unclassified_Izemoplasmatales, Acinetobacter,
Paeniclostridium, unclassified_[Eubacterium] _
coprostanoligenes_group, uncultured
Erysipelotrichaceae_bacterium, Ornithinimicrobium,

Acetobacter, Family XIII AD3011 group, Coprococcus,

Marinobacterium,  unclassified Clostridia vadinBB60
group, unclassified Rickettsiales, unclassified
Oscillospirales, Candidatus_Soleaferrea, Candidatus_

Stoquefichus, Fermentimonas, and Mailhella) genus (Fig.
4B). Using LEfSe to further identify the differential
bacteria associated with diarrhea (Fig. 5).

Diarrhea changed the gut fungal composition of yaks:
At the phylum level, Ascomycota (52.62%, 42.11%),

A

Cladogram

N DA
N HA
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Basidiomycota (15.64%, 49.05%) and Mortierellomycota
(3.59%, 2.00%) were the most preponderant in the HA and
DA (Fig. 6A). Other phyla such as Glomeromycota (3.13%,
0.59%),  Neocallimastigomycota  (1.76%,  0.82%),
Rozellomycota (1.64%, 0.72%), Olpidiomycota (0.23%,
0.079%) and Mucoromycota (0.094%, 0.027%) in HA and
DA were identified in low ratios. At the genus level, the
Elaphomyces (13.36%), Sebacina (12.74%) and Russula
were abundantly present in the DA, whereas the dominant
genus found in the HA were Fusarium (5.85%),
Mortierella (3.53%) and Acremonium (2.80%) (Fig. 6B).
The cluster heat map further showed the distribution of
dominant fungal abundances between the HA and DA (Fig.
60).
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various species were examined across different taxonomic levels. Yellow dots represent taxa that did not exhibit significant changes, while green and
red dots indicate taxa with significant differences. B: Only bacterial taxa with LDA values greater than 3 are displayed.
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At the phyla level, the DA showed significantly higher
abundance Basidiomycota, whereas the HA enriched for
Rozellomycota, unclassified Fungi, Ascomycota,
Mucoromycota, Olpidiomycota, Mortierellomycota and
Chytridiomycota (Fig. 7A). Moreover, 185 genera were
identified to be significantly different between HA and DA
(Fig. 7B). Among these, the relative abundances of 62
(Inosperma, Russula, Cortinarius, Sebacina, Trichoglossum,
Cenococcum, Hodophilus, Inocybe, Tuber,
Pseudocraterellus, lodophanus, Amanita, Cuphophyllus,
Laccaria, Hygrocybe, Genea, Thelephora, Helvella,
Keithomyces, Tricholoma, Pezicula, etc.) genera dramatically

increased, while the relative abundances of 123 (Wallemia,
Candida, Thermomyces, Cephalotrichum, Ceratobasidium,
Lecanicillium, Aureobasidiu, Stagonospora, Penicillium,
Diutina,  Olpidium,  Solicoccozyma,  Metacordyceps,
Selenophoma,  Microscypha,  Humicola,  Alpinaria,
Cladorrhinum, Comoclathris, Alternaria, Phaeosphaeria,
Phaeococcomyces, Papiliotrema, Chloridium,
Vishniacozyma, — Sonoraphlyctis, — Erysiphe, Ilyonectria,
Chaetomium, Dactylonectria, Sarocladium, Corneriella, etc.)
genera dramatically reduced during diarrhea. Using LEfSe to
further identify the differential bacteria associated with
diarrhea (Fig. 8).
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Fig. 8: The microbial taxa that exhibited significant changes during yak diarrhea were analyzed using the LEfSe. A: The evolutionary relationships among
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red dots indicate taxa with significant differences. B: Only taxa with LDA values greater than 3 are displayed.

Correlation Network Analysis: In the gut bacterial
community, Dorea showed a positive association with

Clostridium_sensu_stricto_1 (0.79),
unclassified_Bacteroidales RF16_group (0.78),
uncultured_Parabacteroides _sp (0.76) and
unclassified Lachnospiraceae (0.72) but negatively
related to unclassified_Oscillospirales (-0.89),

Candidatus_Soleaferrea (-0.75), unclassified FO82 (-
0.73) and Akkermansia (-0.70) (Fig. 9A). Ruminococcus
was inversely related to
unclassified p 2534 _18B5 gut group (-0.73).
Candidatus_Soleaferrea was positively associated with
Akkermansia  (0.95), unclassified UCG 010 (0.87),
Monoglobus (0.87) and unclassified Oscillospirales
(0.75).

In the gut fungal community, Aspergillus showed a

positive association with Wallemia (0.96),
unclassified Basidiomycota (0.95),
unclassified_Leotiomycetes (0.95),

unclassified Leotiomycetes (0.95) and Alternaria (0.93) but
negatively correlated with Elaphomyces (-0.98), Cortinarius
(-0.96), Inosperma (-0.96), Russula (-0.95) and Hygrocybe (-
0.93) (Fig. 9B). Inosperma was positively associated with
Cortinarius (0.98) Elaphomyces (0.97), Sebacina (0.96),
Amanita (0.95), Hygrocybe (0.95), and Alternaria (-0.95) but
negatively correlated with unclassified Basidiomycota (-0.93)
and unclassified Fungi d(-0.96). Hygrocybe was positively
related to Cuphophyllus (0.98), Amanita (0.97), Elaphomyces
(0.95), Sebacina (0.95), Cortinarius (0.95), Inocybe (0.92),
but negatively correlated with unclassified_Basidiomycota (-
0.95), unclassified_Fungi (-0.93) and Alternaria (-0.93).
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DISCUSSION

The rapid economic development and increasing
population size have accelerated the growth of the animal
husbandry industry, particularly the beef cattle sector,
effectively addressing nutritional needs. Statistically,
China's beef cattle output is projected to reach 50.99
million heads in 2024, ranking third globally. Moreover,
China's annual beef cattle consumption exceeds 10 million
tons, with both production and consumption on the rise.
Yaks, an essential breed of beef cattle, serve as a vital
source of meat protein for local residents (Xiong et al.,
2022). However, owing to the limited pasture resources and
the extreme, changeable climate of the Qingzang Plateau,
yaks are extremely susceptible to diarrhea (Luo et al., 2024;
Zhang et al., 2024). Diarrhea is a main cause of yak deaths,
which seriously affects the development of the yak
industry. Presently, although many methods have been
taken to prevent diarrhea in yaks, the effect has been
minimal. Recently, studies on diarrheal animals such as
horses, sheep, and pigs found that the intestinal
microorganisms were significantly changed (Zhou et al.,
2023; Zhu et al., 2024). Yet, up to now, no studies have
indicated the connection between yak diarrhea and gut
microbiota. Here, we discussed the variation of gut
microbiota in diarrheal yaks.

Previous studies indicated that some diseases, such as
diarrhea, colitis, and intestinal cancer, could sharply change
the diversity of gut microbiota and further cause gut
microbial imbalance. For example, Ma et al. (2020) showed
that diarrhea significantly reduces the gut microbial diversity
of rats. Wang et al. also demonstrated that diarrhea had a
great influence on the diversity of gut microbiota in weaned
piglets (Wang et al., 2023). Similarly, the present study also
found that diarrhea can sharply reduce the diversity of
intestinal fungi in yaks. Some studies have confirmed that a
reduction in gut microbial diversity threatens host health
from many perspectives. For example, several chronic
diseases, including obesity, mastitis, and Alzheimer's
disease, are closely related to low gut microbial diversity
(Qiu et al., 2024). Moreover, the reduction of gut microbiota
may weaken the competitive inhibition of pathogenic
bacteria and further increase the incidence of infections (Yao
et al., 2025). Also, the reduction of diversity in gut
microbiota may lead to an increase in pro-inflammatory
factor release and a decrease in anti-inflammatory factors,
further inducing systemic inflammation (Yang et al., 2021).
More seriously, gut microbial imbalance can destroy the
intestinal barrier and further disrupt immune homeostasis,
which may increase the susceptibility of the host to other
diseases.

This study found significant changes in some bacteria
and fungi, which could be important for the development
of diarrhea. However, dominant bacterial and fungal phyla
in yak rumen microbiota did not change with different
health statuses. This is very important because the
dominant taxa identified in yaks are also abundant in other
ruminants, indicating that these are vital for the intestinal
ecosystem and function. However, we identified two
bacterial phyla (down-regulated: Firmicutes,
Cyanobacteria) and eight fungal phyla (up-regulated:
Basidiomycota; down-regulated: Rozellomycota,
unclassified Fungi, Ascomycota, Mucoromycota,
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Olpidiomycota,  Mortierellomycota,  Chytridiomycota)
whose relative abundances changed significantly due to
diarrhea. Previous studies have mentioned that members of
Firmicutes are mainly responsible for carbohydrate
degradation and are highly essential for animal growth
(Sun et al., 2023). Firmicutes comprises a large number of
beneficial bacteria that play a crucial role in host immunity,
metabolism, digestion, and maintenance of gut microbial
homeostasis (Jordan et al., 2023). On the other hand,
members of Chytridiomycota are mainly responsible for
cellulose and chitin decomposition. Previous studies have
also mentioned that weight loss is one of the symptoms of
diarrhea in yaks. Under hypoxic conditions of the plateau,
yaks need more energy to maintain their growth. But a
significantly decreased abundance of bacteria and fungi
involved in material digestion may affect yak growth
negatively. Thus, changes in these bacterial and fungal
phyla can be associated with the observed weight loss in
yaks.

Notably, we also observed significant changes in
several beneficial bacteria during episodes of diarrhea,

including Dorea, Defluviitaleaceae, Ruminococcus,
Rikenellaceae, Bacteroides, Lachnospiraceae, and
Prevotellaceae. These changes are essential for

maintaining gut health and function. Dorea participates in
dietary fiber fermentation and plays a crucial role in
adjusting gut microbial homeostasis and intestinal barrier
function. Defluviitaleaceae, which is widely distributed in
the mammalian intestine, has significant medical and
ecological functions, with its abundance being regulated by
dietary factors. Previous studies have indicated that
Defluviitaleaceae can prevent urinary tract infections,
potentially by inhibiting the colonization of pathogenic
bacteria. Ruminococcus is capable of degrading cellulose
and assisting the host in digesting resistant starch and high-
fiber foods, thereby maintaining intestinal barrier stability
(Walls et al., 2023). Additionally, Ruminococcus is
regarded as a core player in intestinal metabolism,
contributing to the reduction of risks associated with
allergies and colorectal cancer (Nie et al., 2025).
Rikenellaceae, prevalent in the mammalian intestine,
particularly in the cecum and colon, plays a vital role in
maintaining intestinal homeostasis (Liu et al., 2024).
Bacteroides has been shown to sustain gut homeostasis by
degrading starch and polysaccharides (Brown et al., 2023).
Moreover, several studies on Bacteroides have indicated its
role in alleviating colitis (Wang et al., 2024).
Lachnospiraceae efficiently degrade complex
polysaccharides and collaborate with lactic acid bacteria to
maintain intestinal flora balance (Yang et al., 2025).
Prevotellaceae possesses the ability to digest proteins and
complex carbohydrates (Cuevas-Sierra et al., 2020).
Notably, several bacteria that significantly decrease during
diarrhea, including Lachnospiraceae, Defluviitaleaceae,
Dorea, Ruminococcus, Rikenellaceae, Bacteroides, and
Prevotellaceae, have been shown to promote or produce
short-chain fatty acids (SCFAs). Previous studies have
reported that SCFAs promote the proliferation of colon
epithelial cells, enhance tight junction protein expression,
and reduce the risk of leaky gut (Chen et al., 2023; Yu et
al., 2024). Meanwhile, SCFAs play a crucial role in
keeping intestinal environments acidic and preventing
pathogen colonization (Zhan et al., 2022). Recent studies
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emphasized their pivotal role in protection against
cardiovascular disease, cholesterol reduction, maintenance
of intestinal flora balance, and anti-inflammation activities
(Abdo et al., 2023). This finding agrees with earlier
observations by Li et al. (2021), who demonstrated distinct
decrease in SCFA-producing bacteria abundance in
diarrheal giraffes. Conversely, potential pathogens
including Acinetobacter and Paeniclostridium were
significantly enhanced in diarrheal animals, consistent with
secondary bacterial overgrowth. Acinetobacter is one of the
core conditional pathogens linked to several hospital
infections due to multidrug resistance, outbreak, and high
mortality rates (Zarrilli ez al., 2018). Also, it may affect the
blood, respiratory tract, and urinary tract of infected
individuals (Hong et al., 2023). Paeniclostridium can
induce systemic toxic shock syndrome, resulting in
multiple organ failure among infected individuals;
interestingly, its mortality rate is nearly 100% among such
infected individuals during delivery (Gonzalez-Astudillo et
al., 2023). The hemorrhagic toxin produced by
Paeniclostridium causes specific binding to colonic
epithelial receptors, inducing hemorrhagic lesions of the
intestine (Nyaoke et al., 2020). Previous studies have
reported that even though the gut fungal community
accounts for about 0.1% of the total gut microbial
community, it is indeed essential for host health (Mahtab et
al., 2021). Accordingly, in this study, we also found
significant variation in gut fungi within the yak diarrhea
group. These evidence indicated that alterations of gut
microbiota might be critical factors that cause diarrhea.

Conclusions: Altogether, this research examines the
changes of gut microbiota in diarrheal yaks. Results
indicated that the composition and structure of gut bacteria
and fungi have undergone significant changes, with the
alterations in gut fungi being particularly evident. This
research represents a fulfillment in understanding the
characteristics and changes of yak gut microbiota during
diarrhea and demonstrated that gut microbiota may play an
important role in diarrhea. In addition, this study provides
a foundation for further research on the prevention and
control of diarrhea based on gut microbiota.
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