Investigation of Virulence Genes by PCR in Staphylococcus aureus Isolates Originated from Subclinical Bovine Mastitis in Turkey

Murat Karahan, Mehmet Nuri Acik* and Burhan Cetinkaya

Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig; †Vocational School of Health Services, Bingol University, Bingol, Turkey

*Corresponding author: mnacik@bingol.edu.tr

ARTICLE HISTORY
Received: January 26, 2011
Revised: March 07, 2011
Accepted: March 11, 2011

Key words:
Mastitis
PCR
Staphylococcus aureus
Virulence Genes

ABSTRACT
The aim of the present study was to characterize coagulase (coa) positive Staphylococcus aureus strains (n=92) isolated from bovine subclinical mastitis in Turkey by PCR amplification of clumping factor A (clfA) and protein A (spa) genes. All the coa-positive S. aureus isolates were determined to harbor the genes encoding the IgG binding region (spa-IgG) and the X region (spa-X) of spa. On the other hand, 84 (91.3%) isolates were positive for clfA gene. These three genes displayed size polymorphisms. It was concluded that spa gene polymorphisms for S. aureus, when used together with coa-PCR, can be proposed as good alternatives to conventional methods in typing S. aureus isolates of bovine origin which may provide valuable data for the development of effective control strategies against staphylococcal mastitis. The results of the present study showed that S. aureus isolates responsible for the mastitis cases in Turkey were genetically diverse.

INTRODUCTION

Mastitis causes considerable economic losses to the dairy industry (Blosser, 1979). Although several bacterial pathogens can cause mastitis, Staphylococcus aureus (S. aureus) is the primary and probably the most lethal agent because it causes chronic and deep infection in the mammary glands that is extremely difficult to be cured (Miles et al., 1992). It has been found responsible for more than 80% of subclinical bovine mastitis which may result in about 300 $ per year of economic losses per animal (De Graves and Fetrow, 1993; Wilson et al., 1997). The main reservoir of S. aureus seems to be the infected quarter, and the transmission between cows usually occurs during milking (Matos et al., 1991; Robertson et al., 1994).

S. aureus has a capacity to produce a large number of potential virulence factors, including a variety of exotoxins and cell surface-associated proteins (Fitzgerald et al., 2000; Foster, 2005; Kalorey et al., 2007). This might be of significance for food hygiene especially in cases of subclinical mastitis due to S. aureus and might also contribute to an increased udder pathogenicity of the organisms. These factors may be of more importance than others in different diseases or at different stages of the pathogenesis of particular infections, as not all factors are produced by each strain (Annemuller et al., 1999; Kalorey et al., 2007). One of the major surface proteins is staphylococcal protein A (Spa), which bacterial cell wall product that binds immunoglobulin G and impairs opsonisation by serum complement and phagocytosis by polymorphonuclear leukocytes (Gao and Stewart, 2004). The decrease of protein A on the cell surface of S. aureus resulted in a greater number of free receptor sites for complement C3b and in an increase in phagocytosis (Gemmell and O’Dowd, 1983; Gao and Stewart, 2004). The gene encoding protein A (spa) is composed of some functionally distinct regions: IgG Fc binding region (spa-IgG), X region (spa-X) and at C terminus, a sequence required for cell wall attachment. The repetitive region X of the spa gene includes a variable number of 24-bp repeats. The number and sequence of individual repeats may differ among strains (Frenay et al., 1996; Van Belkum et al., 1997).

S. aureus is known to express numerous adhesions. Clumping factor A (clfA) is considered to be one of the most important adhesion factors of S. aureus to host cells. clfA is known to participate in the infection process by facilitating bacterial binding via soluble or immobilized fibrinogen. Because fibrinogen plays a significant role in platelet thrombus formation, it is likely that clfA may be involved in supporting bacterial-platelet interactions.
(Mcdevitt et al., 1994). This factor has been shown to inhibit phagocytosis in the absence of fibrinogen, and the inhibition was enhanced in the presence of fibrinogen. The ability of ClfA to inhibit phagocytosis by human PMNL may explain its importance in S. aureus virulence in a variety of animal models of infection (Higgins et al., 2006).

At present little is known about the occurrence of these virulence genes among S. aureus isolates from cattle with bovine mastitis in Turkey. The aim of the present study was to characterize coa- positive S. aureus strains isolated from bovine subclinical mastitis in Turkey by Polymerase Chain Reaction (PCR) amplification of clfA and protein A (spa-IgG and spa-X) genes.

MATERIALS AND METHODS

Bacterial isolates and DNA extraction
A total of 92 coa-positive S. aureus strains obtained from milk samples of 400 cows with subclinical mastitis which were collected from 50 small family farms (with the capacity of 5 to 10 cows) in Elazig and neighboring towns located in the east of Turkey between March 2002 and April 2003 were analyzed in this study (Karahan and Çetinkaya, 2007). Initially, the isolates were subcultured on Tryptic Soy Agar (TSA, Difco). Bacterial DNA was extracted using the modified method of Montanaro et al. (1999). A few colonies from pure cultures were transferred into a microcentrifuge tube containing 45 µl distilled water. Five microlitres of lysostaphin (Sigma, 100 µg/ml) was added and the mixture was incubated at 37 ºC for 20 min. Then, 5 µl of proteinase K (Sigma, 100 µg/ml) and 150 µl of 0.1 M Tris/HCl, pH 7.5, were added to the suspension, which was incubated for a further 20 min. Finally, the suspension was heated at 95 ºC for 10 min to inactivate proteinase K.

PCR amplification of clumping factor (clfA) gene
A pair of primers specific to clfA gene of S. aureus described previously by Stephan et al. (2001) was used in the PCR. The PCR was performed in a Techne TC-512 gradient thermalcycler (Techne, UK) in a total reaction volume of 50 µl containing 5 µl of 10 x PCR buffer (750 mM Tris-HCl, pH 8.8, 200 mM (NH₄)₂SO₄, 0.1% Tween -20), 5 µl of 25 mM MgCl₂, 5 µl of 250 µM of each deoxynucleotide triphosphate, 0.25 µl of 1.25 U Taq DNA polymerase (MBI, Fermentas), 2.5 µl of 20 pmol of each primer, 5 µl of 25 ng of template DNA and 25 µl of sterile distilled water. Following the initial denaturing step at 94ºC for 1 min, a total of 35 cycles were performed; denaturing at 94ºC for 1 min, annealing at 57 ºC for 1 min and extension at 72ºC for 1 min. A last step of extension at 72ºC for 5 min was applied.

PCR amplification of protein A (spa) gene.
A pair of primers specific to IgG region of spa gene (spa-IgG) of S. aureus described previously by Seki et al. (1998) was used in the PCR. The PCR mixture was prepared as described above. Following the initial denaturing step at 94ºC for 5 min, a total of 30 cycles were performed; denaturing at 94ºC for 1 min, annealing at 58ºC for 1 min and extension at 72ºC for 1 min. A last step of extension at 72ºC for 5 min was applied.

A pair of primers specific to X region of spa gene (spa-X) of S. aureus described previously by Frenay et al. (1994) was used in the PCR. The PCR mixture was prepared as described above. Following the initial denaturing step at 94ºC for 5 min, a total of 30 cycles were performed; denaturing at 94ºC for 1 min, annealing at 60ºC for 1 min and extension at 72ºC for 1 min. A last step of extension at 72ºC for 5 min was applied.

RESULTS

It was determined that 91.3% (84/92) of coa positive S. aureus isolates of bovine subclinical mastitis origin carried clfA gene. Sixty-eight (81.0%) of the isolates which were positive in terms of clfA gene was determined to form amplicons at the molecular length of approximately 1000 bp, whereas the remaining 16 isolates (19.0%) produced amplicons at the size of approximately 900 bp (Fig. 1).

Also, two different domains spa gene which is regarded as significant as coa for S. aureus were examined in the present study and all the isolates were determined to carry both the domains. In the PCR amplification of spa-IgG, most of the isolates (n=67, 72.8%) produced amplicons at the molecular length of approximately 920 bp, while the remaining 25 isolates (27.2%) formed bands at the size of approximately 750 bp (Fig. 2).

PCR products at the molecular lengths of approximately 110, 140, 170, 190, 220, 240, 270, 290 and 320 bp with 3, 4, 5, 6, 7, 8, 9, 10 and 11 repeat units were obtained in the PCR amplification of spa-X in the present study (Fig. 3). The isolates forming products with 10 repeat units at the size of 290 bp were determined as predominant (n=18, 19.6%). On the other hand, eight, six, five and three repeat units at the molecular lengths of 240, 190, 170 and 110 bp, respectively, were obtained from less than 10 isolates (Table 1).

Table 1: PCR amplification results of X domain of spa gene in coa-positive S. aureus isolates of bovine subclinical mastitis origin in eastern Turkey.

<table>
<thead>
<tr>
<th>Number of Isolates (%)</th>
<th>Size of the amplicons (bp)</th>
<th>Repeat units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (19.6)</td>
<td>290</td>
<td>10</td>
</tr>
<tr>
<td>17 (18.4)</td>
<td>140</td>
<td>4</td>
</tr>
<tr>
<td>16 (17.4)</td>
<td>320</td>
<td>11</td>
</tr>
<tr>
<td>14 (15.2)</td>
<td>270</td>
<td>9</td>
</tr>
<tr>
<td>12 (13.0)</td>
<td>220</td>
<td>7</td>
</tr>
<tr>
<td>8 (8.7)</td>
<td>240</td>
<td>8</td>
</tr>
<tr>
<td>3 (3.3)</td>
<td>190</td>
<td>6</td>
</tr>
<tr>
<td>3 (3.3)</td>
<td>170</td>
<td>5</td>
</tr>
<tr>
<td>1 (1.1)</td>
<td>110</td>
<td>3</td>
</tr>
</tbody>
</table>
The size of 1000 bp. Bands at the size of 900 bp; 6-10: field isolates forming bands at the size of 920 bp. DNA Ladder (Fermentas, SM 0321), 1-5: field isolates forming bands at the size of 750 bp; 6-10: field isolates forming bands at the size of 1000 bp.

Fig. 1: Ethidium bromide-stained agarose gel electrophoresis of clfA PCR results in coa-positive S. aureus isolates. M: 100 bp DNA Ladder (Fermentas, SM 0321), 1-5: field isolates forming bands at the size of 900 bp; 6-10: field isolates forming bands at the size of 1000 bp.

Fig. 2: Ethidium bromide-stained agarose gel electrophoresis of spa-IgG PCR results in coa-positive S. aureus isolates. M: 100 bp DNA Ladder (Fermentas, SM 0321), 1-5: field isolates forming bands at the size of 750 bp; 6-10: field isolates forming bands at the size of 920 bp.

Fig. 3: Ethidium bromide-stained agarose gel electrophoresis of spa-X PCR results in coa-positive S. aureus isolates. M: 100 bp DNA Ladder (Fermentas, SM 0321), 1: 110 bp; 2: 140 bp, 3: 170 bp 4: 190 bp 5: 220 bp, 6: 240 bp, 7: 270 bp, 8: 290 bp, 9: 320 bp.

DISCUSSION

Although most of the coa positive S. aureus isolates were determined to carry clfA gene, eight isolates were negative for this gene in the present study. A great majority of the previous studies reported the presence of 100% positive correlation between clfA and coa genes in the bovine S. aureus isolates (Akineden et al., 2001; Stephan et al., 2001; Salasia et al., 2004; Reinoso et al., 2008). However, epidemic clfA negative isolates of human origin has been noted (Schwarzkopf et al., 1993). A study conducted by Yavuz and Esendal (2002) suggested that determining clumping factor in phenotypic terms was an indispensable test for the discrimination of Staphylococcus species. However, it should not be ignored that many isolates were found positive in terms of coagulase, which were, on the other hand, found negative in terms of phenotypic clumping factor (Yavuz and Esendal, 2002). Hence, determining clfA gene was considered to be a useful method in order to avoid possible false identification results in phenotypic tests. Amplicons at two different molecular sizes were obtained in the PCR analysis of the isolates for clfA gene in this study. Stephan et al. (2001) and Salasia et al. (2004) obtained only one amplicon at 1000 bp molecular length from all of the isolates they examined and they did not report any polymorphism for this gene domain. However, Akineden et al. (2001) and Reinoso et al. (2008) reported amplicons at 900-950 bp molecular length in fewer isolates as well as ampiclons at 1000 bp in most of the isolates they examined. Even though sequence variances were reported in previous studies, there is still insufficient knowledge related to the polymorphism in this gene.

In the PCR amplification of spa-IgG, two different amplification products were determined with the one at the size of 920 bp being the most common. Likewise, in previous studies, it was reported that the isolates with the PCR product at the size of 920 bp were predominant (Stephan et al., 2001; Salasia et al., 2004). On the other hand, Reinoso et al. (2008) reported that while the isolates originating from cattle mastitis produced amplicons at 920 bp, human isolates formed PCR products at the size of 750 bp. When the results of this and previous studies are evaluated together, it can be stated that there is a relationship between S. aureus isolates of bovine and human origin. This situation may stem from a contamination of milking workers during the milking process. Seki et al. (1998) reported that the isolates forming amplicons at the size of 920 bp had five repeat units, whereas amplification products at the size of 750 bp had four repeat units. Because IgG binding region of spa is comprised of 170 bp domains, one IgG domain was considered to be missing in the isolates forming amplicons at the molecular length of 750 bp in this study.

Spa-X has been regarded as an appropriate target gene domain for determining the differences between S. aureus isolates in a short time (Frenay et al., 1996; Annemuller et al., 1999; Lange et al., 1999; Reinoso et al., 2008). PCR products at nine different molecular size with various repeat units were noted in the PCR amplification of spa-X with 10 repeat units at the size of 290 bp being the most common in the present study. The number of repeat units may reveal the associations among the isolates of different origins or different geographical locations. Frenay et al. (1994) reported an association between the potential distribution of S. aureus and the number of repeat units. They defined the isolates with more than seven repeat units as epidemic isolates and with seven or fewer repeat units as non-epidemic isolates. The present study revealed that field isolates with more than seven repeat units were more prevalent in eastern Turkey with 56 (60.9%) of the 92 cattle mastitis isolates. Similar results were reported by other researchers from Turkey as well (Kuzma et al., 2005). The finding that...
eight isolates which were negative for clfA but positive for Spa may also bring into mind the possibility of deletion in the clfA gene in some isolates those differed from most of the isolates.

General comparison of the virulence genes examined in this study showed that the isolates forming approximately 900 bp amplicons for clfA gene was observed to produce amplicons at the size of 750 bp for IgG domain and at the size of 140 bp with four repeat units for X domain of spa gene, while they produced an amplicon at the size of 950 bp with the exception of only one isolate in the coa-PCR (Karahan and Çetinkaya, 2007). This finding may be significant to enlighten the reasons of polymorphism in clfA gene, which yet to be explained, in future studies.

In conclusion, clfA, spa-IgG and spa-X, which are important virulence genes, were observed to be present in coa-positive S. aureus isolates obtained from dairy cows with subclinical mastitis in eastern Turkey. The PCR amplification results of X domain of spa gene indicated that it can be proposed as an alternative method to coa-PCR in order to gain detailed information about the distribution of Staphylococcal isolates.

Acknowledgement
This work was funded by the Scientific and Technical Research Council of Turkey (TUBITAK, Project TOVAG-1040404).

REFERENCES
Schwarzkopf A, H Karch, H Schmid, W Lenz and J Heesemann, 1993. Phenotypical and genotypical characterization of epidemic clumping factor-