COX-2 Inhibitors for Cancer Treatment in Dogs

Andrigo Barboza De Nardi*, Talita Mariana Morata Raposo¹, Rafael Ricardo Huppes¹, Carlos Roberto Daleck² and Renée Lauffer Amorim³

Small Animal Veterinary Medicine, Universidade de Franca-UNIFRAN & School of Veterinary Medicine, Universidade Federal do Tocantins-UFT; ¹Veterinary Medicine Graduate Program, Universidade Estadual Paulista- UNESP, Campus in Jaboticabal; ²Veterinary Surgery Graduate Program, Universidade Estadual Paulista-UNESP, Campus at Jaboticabal; ³Veterinary Medicine Graduate Program, Universidade Estadual Paulista-UNESP, Campus at Botucatu and Veterinary Medicine Graduate Program, Universidade Estadual Paulista-UNESP, Campus in Jaboticabal, Brazil

*Corresponding author: andrigobarboza@yahoo.com.br

ARTICLE HISTORY
Received: May 11, 2011
Revised: June 07, 2011
Accepted: June 11, 2011

Key words:
Canine
Coxibs
Cyclooxygenase-2
Tumor

ABSTRACT
Cancer is one of the main causes of death in canines and felines, and this fact is probably related to the increase in the longevity of these species. The longer the animals live, the higher the exposure to carcinogenic agents will be. With the high incidence of cancer in companion animals, new studies are currently being performed with the aim of finding therapeutic options which make the complete inhibition of the development of neoplasms in animals possible in the future. The correlation of cyclooxygenase-2 (COX-2) with the development of cancer opens the way for the use of new therapeutic approaches. This relationship has been suggested based on various studies which established an association between the chronic use of nonsteroidal anti-inflammatory drugs (NSAID) and a decrease in the incidence of colon carcinoma. As cancer progresses, COX-2 participates in the arachidonic acid metabolism by synthesizing prostaglandins which can mediate various mechanisms related to cancer development such as: increase in angiogenesis, inhibition of apoptosis, suppression of the immune response, acquisition of greater invasion capacity and metastasis. Accordingly, overexpression of this enzyme in tumors has been associated with the most aggressive, poor-prognosis cancer types, especially carcinomas. Therefore, treatments which use COX-2 inhibitors such as coxibs, whether administered as single agents or in combination with conventional antineoplastic chemotherapy, are an alternative for extending the survival of our cancer patients.

©2011 PVJ. All rights reserved

INTRODUCTION
Cancer is one of the main causes of death in canines and felines, and this fact is probably related to the increase in the longevity of these species. Prevention of contagious infectious diseases by vaccination schemes and technological advances which yield greater diagnostic & therapeutic precision, in addition to provision of specific diets through balanced and therapeutic foods, allow dogs and cats to have a longer life. Therefore, the higher incidence of neoplasms is a consequence of the longer exposure to carcinogenic agents (Rodaski and Piekars, 2009).

With the high incidence of cancer in companion animals, new studies are currently being performed with the aim of discovering therapeutic options which make the complete inhibition of the development of neoplasms in animals possible in the future. The correlation of cyclooxygenase-2 (COX-2) with cancer development provides a new therapeutic modality against this disease. This relationship has been postulated with basis on various studies which established an association between the chronic use of nonsteroidal anti-inflammatory drugs (NSAID) and a decrease in the incidence of colon carcinoma. As cancer progresses, COX-2 participates in the arachidonic acid metabolism by synthesizing prostaglandins which can mediate various mechanisms related to cancer development such as: increase in angiogenesis, inhibition of apoptosis, suppression of the immune response, acquisition of greater invasion capacity and metastasis. Accordingly, overexpression of this enzyme in tumors has been associated with the most aggressive, poor-prognosis cancer types, especially carcinomas. Therefore, treatments which use COX-2 inhibitors such as coxibs, whether administered as single agents or in combination with conventional antineoplastic chemotherapy, are an alternative for extending the survival of our cancer patients.

©2011 PVJ. All rights reserved

INTRODUCTION
Cancer is one of the main causes of death in canines and felines, and this fact is probably related to the increase in the longevity of these species. Prevention of contagious infectious diseases by vaccination schemes and technological advances which yield greater diagnostic & therapeutic precision, in addition to provision of specific diets through balanced and therapeutic foods, allow dogs and cats to have a longer life. Therefore, the higher incidence of neoplasms is a consequence of the longer exposure to carcinogenic agents (Rodaski and Piekars, 2009).

With the high incidence of cancer in companion animals, new studies are currently being performed with the aim of discovering therapeutic options which make the complete inhibition of the development of neoplasms in animals possible in the future. The correlation of cyclooxygenase-2 (COX-2) with cancer development provides a new therapeutic modality against this disease. This relationship has been postulated with basis on various studies which established an association between the chronic use of nonsteroidal anti-inflammatory drugs (NSAID) and a decrease in the incidence of colon carcinoma. As cancer progresses, COX-2 participates in the arachidonic acid metabolism by synthesizing prostaglandins which can mediate various mechanisms related to cancer development such as: increase in angiogenesis, inhibition of apoptosis, suppression of the immune response, acquisition of greater invasion capacity and metastasis. Accordingly, overexpression of this enzyme in tumors has been associated with the most aggressive, poor-prognosis cancer types, especially carcinomas. Therefore, treatments which use COX-2 inhibitors such as coxibs, whether administered as single agents or in combination with conventional antineoplastic chemotherapy, are an alternative for extending the survival of our cancer patients.
enzyme phospholipase A2 on cell membrane phospholipids (Wang et al., 2006; Souza et al., 2009). Oxidation of arachidonic acid can occur through the lipooxigenase or the cyclooxygenase enzymatic pathways (Queiroga et al., 2005).

Cyclooxygenase acts on membrane phospholipids by converting arachidonic acid into a stable prostaglandin endoperoxide, PGG2. PGG2 is reduced to prostaglandin H2 (PGH2), which is then available to serve as substrate for the synthesis of other prostaglandins such as PGE2, PGD2 and PGI2a. PGH2 can also be converted into a prostacyclin (PGI2) or a thromboxane (TXA2) (Queiroga et al., 2005).

There are at least two types of cyclooxygenases which exert distinct physiologic functions in the organism: cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) (Spugnini et al., 2005; Wang et al., 2006; Souza et al., 2009; Queiroga et al., 2010). A third type, cyclooxygenase-3 (COX-3), has also been described as a COX-1 variant and it is more abundant in the cerebral cortex and in the heart (Wolfsberger et al., 2006).

COX-1 is constitutively expressed in many tissues and is responsible for the synthesis of the prostaglandins which regulate normal cellular function. When inhibited, COX-1 causes side effects such as gastric ulcers and renal toxicity (Murray and Brater, 1993; Davies, 1995).

COX-2 is usually absent in normal cells (Davies, 1995; Pires et al., 2010); however, its expression can be induced by growth factors, inflammatory reactions, tumoral promoters and various oncogenes (Spugnini et al., 2005; Pires et al., 2010; Queiroga et al., 2010).

During cancer development, this enzyme participates in the arachidonic acid metabolism by synthesizing prostaglandins which can mediate various processes such as increase in cell proliferation and angiogenesis, suppression of the immune system and reduction of the apoptosis rate (Lavalle et al., 2009).

There are two main NSAIDs groups: non-specific COX-1 and COX-2 inhibitors and specific COX-2 inhibitors. The latter exclusively bind COX-2, which results in fewer gastrointestinal side effects (Queiroga et al., 2010).

Experimental studies in rats confirmed that the use of selective COX-2 inhibitor drugs exert a protective effect against tumor development in the gastrointestinal system (Oshima et al., 1996; Kawamori et al., 1998), which verifies the importance of COX-2 in the carcinogenic process (Eberhat et al., 1994; Subbaramaiah et al., 1996; Hida et al., 1998). Other studies found evidence of reduction in tumor growth and in metastasis development, which suggests an emerging role of selective COX-2 inhibitors in the prevention and treatment of cancer (Denkert et al., 2003; Howe, 2007).

Association of COX-2 expression with neoplasias

With basis on experimental studies, mechanisms associated with tumoral promotion such as increase in angiogenesis, inhibition of apoptosis, modulation of immune response, and greater invasive and metastatic capacities have been proposed to explain the consequences of COX-2 overexpression (Cao and Prescott, 2002; Millanta et al., 2006; Howe, 2007).

This enzyme is associated with the production of vascular endothelial growth factor (VEGF), which stimulates the growth of endothelial cells and, thereby, promotes angiogenesis, which is indispensable for most solid tumors as newly formed blood vessels provide nutrients and warrant their growth and survival. In addition, angiogenesis is crucial for the development of metastases (Knottenbelt et al., 2006).

Prostaglandin E2 (PGE2) is known to be the main COX-2 product involved in tumor development and progression (Mohammed et al., 2001). Colony-stimulating factors secreted by tumor cells activate monocytes and macrophages and stimulate these cells to synthesize PGE2, which inhibits lymphokine regulation, T cells, B cell proliferation and the cytotoxic activity of natural killer (NK) cells. PGE2, in turn, inhibits the production of tumor necrosis factor (TNF) and induces the production of interleukin-10 (IL-10), which contributes to suppression of the immune response (Dannenberg et al., 2001; Wang et al., 2006).

Accordingly, overexpression of COX-2 in tumors has been associated with a poor prognosis and with the most aggressive cancers, especially carcinomas (Lascelles, 2007). Studies in Veterinary Medicine have shown an increase in the expression of COX-2 and PGE2 in various canine tumors (León-Artozqui and Morcate, 2008) (Table 1), such as intestinal (McEntee et al., 2002), pancreatic (Mohammed et al., 2004), ovarian (Borzacchiello et al., 2007), prostatic (L’Eplattenier et al., 2007), mammary gland (Doré et al., 2003; De Nardi et al., 2007; Queiroga et al., 2007; Dias Pereira et al., 2009; De Nardi et al., 2009; Lavalle et al., 2009; Queiroga et al., 2010), nasal cavity (Mullins et al., 2004; Heller et al., 2005; Impellizzeri and Esplin, 2008) and oral (Pires et al., 2010) neoplasms.

Increased expression of COX-2 in patients with mammary neoplasms is associated with lesser survival in bitches (Queiroga et al., 2005; Lavalle et al., 2009; Queiroga et al., 2010). In addition, De Nardi et al. (2007) and Dias Pereira et al. (2009) found that COX-2 was overexpressed in the majority of the metastatic lesions studied as well as in primary mammary neoplasms, which contributes to the suspicion that this enzyme possesses angiogenic and invasive properties in the metastatic process.

COX-2 is also found in precancerous cutaneous lesions such as actinic keratosis. In humans, irradiation with ultraviolet light B (UVB) induces overexpression of this enzyme in keratinocytes, which suggests its involvement in skin cancer development after prolonged exposure to sunlight (Bakhle, 2001).

Studies suggest that cyclooxygenase-2 inhibits apoptosis by inducing expression of the proto-oncogene Bcl and that this anti-apoptotic effect can extend the survival of abnormal cells, which provides more time for the accumulation of genetic mutations that result in neoplastic transformations (Surh et al., 2001; Bol et al., 2002; Cao and Prescott, 2002). One study has found evidence of reduction of Bcl-2 expression and induction of apoptosis in cancer cells after the use of COX-2 inhibitors (Cao and Prescott, 2002).
COX-2 inhibitor. Firocoxib is used at a dose of 5 mg/kg every 24 hours and is also characterized as a specific inhibitor for this enzyme; whereas, meloxicam is a preferential COX-2 inhibitor prescribed at a dose of 0.2 mg/kg on the first day of treatment and, subsequently, at 0.1 mg/kg every 24 hours. Piroxicam is used at a dose of 0.3 mg/kg every 24 hours or 0.5 mg/kg every 48 hours and is regarded as a non-specific COX inhibitor (Lascelles, 2007).

Piroxicam has demonstrated anticancer effects on some tumors such as transitional cell carcinoma of the bladder and oral squamous cell carcinoma (Lascelles, 2007), and also has produced good results in the treatment of dogs with rectal polyps (Knottenbelt et al., 2000). Souza et al. (2009) observed a clinical response in all dogs affected by inflammatory mammary carcinoma which were treated with this drug.

Dogs with transitional cell carcinoma treated with piroxicam exhibited the same rate of response to the treatment and survival as those treated with traditional antineoplastic chemotherapy (Knapp et al., 1992; Knapp et al., 1994). Piroxicam can also be used in combination with conventional antineoplastic chemotherapy as an adjuvant. In cases of transitional cell carcinoma, this medication can be associated with cisplatin and thereby increase the tumoral reduction rate in some cases, even though renal toxicity is frequent and dose-limiting (Mohammed et al., 2003).

It is suggested that piroxicam does not induce apoptotic effects on cancer cells; instead, its antineoplastic effects can be associated with COX-2 inhibition and, consequently, with a decrease in cell proliferation and inhibition of angiogenesis or with an increase in the immune response at the tumor site (Knapp et al., 1992; Mutsaers et al., 2005; Spugnini et al., 2005; Chun and Thamm, 2007; Souza et al., 2009).

Meloxicam has been studied by Wolfesberger et al. (2006) in dogs with osteosarcoma. These researchers observed inhibition of neoplastic cell growth 48 and 72 hours after treatment with meloxicam at doses of 200, 400 and 600 µM delivered through the intramuscular route, doses which were higher than those recommended for conventional treatment.

Firocoxib has been studied by León-Artozqui and Morcate (2008), who observed an improvement in quality of life in patients with transitional cell carcinoma of the bladder after treatment with firocoxib alone or combined with antineoplastic chemotherapeutic drugs such as cisplatin; in addition, a significant increase in patient survival was also found.

However, even though the evidence available thus far indicates that various neoplasms exhibit increased COX-2 expression, the effect of treatment with inhibitors of this enzyme on these neoplasms requires further evaluation (Borzacchiello et al., 2007; L’Epplattenier et al., 2007; Lavalle et al., 2009).

Conclusions

Selective cyclooxygenase-2 inhibitors are an alternative for the treatment of neoplasias in dogs and can be used alone or combined with other basic therapies such as antineoplastic chemotherapy. Further studies are required to precisely determine the best doses and the

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Intensity of Expression of COX-2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumors That Express COX-2</td>
<td></td>
</tr>
<tr>
<td>Oral SCC</td>
<td>65-100</td>
</tr>
<tr>
<td>Skin SCC</td>
<td>100</td>
</tr>
<tr>
<td>Oral Melanoma</td>
<td>60</td>
</tr>
<tr>
<td>Prostatic Carcinoma</td>
<td>56-75</td>
</tr>
<tr>
<td>TCC of the Bladder</td>
<td>58-100</td>
</tr>
<tr>
<td>Mammary Tumor</td>
<td>62-100*</td>
</tr>
<tr>
<td>Colorectal Carcinoma</td>
<td>65</td>
</tr>
<tr>
<td>Nasal Carcinoma</td>
<td>73-87</td>
</tr>
<tr>
<td>Renal Cell Carcinoma</td>
<td>67</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>23-79</td>
</tr>
<tr>
<td>Tumors that Do Not Express COX-2</td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td>0</td>
</tr>
<tr>
<td>Histiocytic Sarcoma</td>
<td>0</td>
</tr>
<tr>
<td>Hemangiosarcoma</td>
<td>0</td>
</tr>
</tbody>
</table>

SCC: squamous cell carcinoma, TCC: transitional cell carcinoma. Source: León-Artozqui and Morcate (2008). *Depends on the Histological Type (Mohammed et al., 2004; Queiroga et al., 2005; Millanta et al., 2006; Queiroga et al., 2007; Lavalle et al., 2009).

With the catalytic activity of COX-2, DNA damage by free radicals is potentiated and results in permanent lesions in the genomic DNA, which provides support for the hypothesis that inflammatory processes lead to the onset of cancer (Zha et al., 2001; Dong et al., 2003). These studies verify the important role of COX-2 in the pathogenesis of cancer and suggest that programmed inhibition of this enzyme through the use of selective COX-2 inhibitors, selective COX-2 inhibitors may be effective for chemoprevention and treatment of cancer.

Use of COX-2 inhibitors for the treatment of cancer

Drugs which inhibit COX-2 have shown to possess potential effects on the reduction of cancer incidence and the ability to potentiate the effects of antineoplastic chemotherapy (Dvory-Sobol and Arber, 2007; Arber, 2008). These drugs are indicated for the treatment of cancer as they exert both preventive and therapeutic effects in spontaneous and experimental canine neoplasia models (Borzacchiello et al., 2007; Rossmeisl et al., 2009).

The majority of NSAIDs inhibit both COX-1 and COX-2; whereas, coxibs, which constitute a new generation of NSAIDs, are selective COX-2 inhibitors (Jones and Budsberg, 2000).

Coxibs developed for use in Veterinary Medicine are currently being intensely studied for the treatment of neoplasias in dogs (León-Artozqui and Morcate, 2008). Owing to their high selectivity for COX-2, these molecules are believed to exhibit a more potent antitumoral effect than traditional NSAIDs; in addition, the safety provided by coxibs is much higher as judged by the lower extent of their associated side effects.

The most studied COX-2 inhibitors are carprofen, deracoxib, firocoxib, meloxicam and piroxicam, which are all administered orally (Lascelles, 2007). Carprofen is used at a dose of 2mg/kg every 12 hours or 4mg/kg every 24 hours and is considered to be a preferential COX-2 inhibitor. Deracoxib is administered at a dose of 1 to 2 mg/kg every 24 hours and is considered to be a specific
most effective administration schedules for the treatment of neoplasias in companion animals.

REFERENCES

