

Pakistan Veterinary Journal

ISSN: 0253-8318 (PRINT), 2074-7764 (ONLINE) Accessible at: www.pvj.com.pk

RESEARCH ARTICLE

Assessment of Heavy Metals in the Fish Collected from the River Ravi, Pakistan

Ghazala Jabeen*, Muhammad Javed and Hamda Azmat

Department of Zoology and Fisheries, University of Agriculture, Faisalabad *Corresponding author: ammararahal@yahoo.com

ARTICLE HISTORY ABSTRACT

Received:June 29, 2011Revised:August 26, 2011Accepted:September 08, 2011Key words:AccumulationFishHeavy metalsOrgansRiver Ravi

The toxicity of heavy metals viz. aluminium (Al), arsenic (As), barium (Ba), chromium (Cr), nickel (Ni) and zinc (Zn) in fish at three main public fishing sites of the river Ravi viz. Shahdara bridge, Baloki headworks and Sidhnai barrage has been studied from June, 2009 to May, 2010. The concentrations of heavy metals in the body organs (gills, liver, kidney, intestine, reproductive organs, skin, muscle, fins, scales, bones, fats) of three fish species viz. Catla catla, Labeo rohita and Cirrhina mrigala were determined. The present results reveal that the toxicity of metals fluctuated significantly in fish at all the three sampling stations with season. The fish samples collected from all the three sampling stations had significantly higher aluminium and zinc. However, the fish at Sidhnai barrage showed significantly lower metallic toxicity, followed by that at Baloki headworks and Shahdara bridge. Significantly higher metals were observed in fish liver, followed by that of kidney, gills, intestine, reproductive organs, skin, scales, fins, bones, muscle and fats. The accumulation of metals in carnivorous fish body organs showed significantly direct dependence on the metallic toxicity of herbivorous cyprinids. Fish liver and kidney showed significantly higher abilities for the accumulation of all metals while accumulations were lowest in fish muscle and fats. The health status of river Ravi at three main public fishing sites viz. Shahdara bridge, Baloki headworks and Sidhnai barrage, with respect to eco-toxicity of Al, As, Ba, Cr, Ni and Zn was above the recommended permissible standards.

©2011 PVJ. All rights reserved

To Cite This Article: Jabeen G, M Javed and H Azmat, 2012. Assessment of heavy metals in the fish collected from the river Ravi, Pakistan. Pak Vet J, 32(1): 107-111.

INTRODUCTION

Heavy metals discharges into the aquatic ecosystems, through domestic sewage and industrial effluents have severe environmental and ecological impacts (Gagnaire et al., 2004; Naeem et al., 2010; Abu-Darwish et al., 2011). The contamination of freshwaters due to several harmful metals, through substances, like inputs from anthropogenic sources viz. industrial and agricultural activities, domestic sewage, groundwater leaching and runoffs from agriculture has devastating effects on animals including fish (Donohue et al., 2006). Rivers running through urban areas have also been faced water quality issues due to discharge of untreated domestic sewage, municipal wastes and industrial effluents into them leading to increase the metallic toxicity in the river waters (Venugopal et al., 2009; Sekabira et al., 2010).

In the aquatic ecosystems, fish are considered the important indicators of heavy metal enrichment of the aquatic ecosystems (Gernhofer *et al.*, 2001). In an aquatic

ecosystem, metals are transferred to the fish through food chain that could ultimately affect the health of people consuming this fish. Heavy metals are known for their persistent toxicity and tendency to bio-accumulate in aquatic ecosystems (Miller et al., 2002). Therefore, metals eco-toxicity of the aquatic ecosystems has become a major health concern over the years (Mendil et al., 2010; Shah et al., 2010). Heavy discharge of enormous metallic compounds into the river systems of Pakistan has adversely affected the freshwater fisheries especially in the river Ravi (Rauf, 2009). This has attributed to bioaccumulation and biological magnification of metals in fish even at low concentration levels of various metals in the river Ravi. Therefore, the present investigation was conducted to determine the heavy metals (Al, As, Ba, Cr, Ni and Zn) toxicity gradient and multivariate relationships for the flow of metals in the river Ravi aquatic ecosystem at three main public fishing sites viz. Shahdara bridge, Baloki headworks and Sidhnai barrage.

MATERIALS AND METHODS

Three main public fishing points viz. Shahdara bridge, Baloki headworks and Sidhnai barrage were selected at the river Ravi stretch to monitor the year-round variations of aluminium (Al), arsenic (As), barium (Ba), chromium (Cr), nickel (Ni) and zinc (Zn) toxicity in the fish. Each sampling station was divided into two substations viz. upstream and downstream for the collection of fish samples. Fish samples were collected on monthly basis for one year (from June, 2009 to May, 2010). Three herbivorous cyprinids including Catla catla, Labeo rohita and Cirrhina mrigala while those of carnivore fish species were Rita rita, Mystus sperata and Wallago attu. Sampled fish were dissected and their organs viz. gills, liver, kidney, intestine, reproductive organs, skin, muscle, fins, scales, bones and fats isolated for the determination of heavy metals. The samples were digested with concentrated nitric acid and perchloric acid (3:1, v/v) until a clear and transparent solution was obtained. The digested samples were diluted to make the volume by using the double distilled water in 500 ml volumetric flask. After wet digestion, samples of fish organs were analyzed for Al, As, Ba, Cr, Ni and Zn concentrations according to A.P.H.A. (1998) through Atomic Absorption Spectrometry (Perkin Elmer, AAnalyst 400).

Data Analysis: The data on different variables, obtained from the experiment, were statistically analyzed by using SPSS 10.1 computer program. Analysis of variance and Tukey's/ Student Newman-keul tests were performed to findout statistical differences among various parameters at p<0.05. Regression and Correlation analyses were also computed to establish relationships among various parameters (Steel *et al.*, 1996). MS Office package was employed for graphical presentation of the data.

RESULTS

Fish organs of both herbivorous cyprinids and carnivore fish species showed significantly variable tendencies to accumulate aluminium, arsenic, barium, chromium, nickel and zinc. All fish species collected from three sampling stations had significantly higher Al, followed by Zn, Cr, Ni, As and Ba in their organs.

Aluminium: The carnivore fish species had significantly (p<0.05) higher mean aluminium in their body organs than that found in herbivorous fish. In both herbi– and carnivore fish, the liver showed the mean maximum aluminium concentrations of 152.66 ± 19.60 and $169.83\pm11.30 \ \mu gg^{-1}$ respectively, followed by that in kidney and gills. Both herbi- and carnivore species exhibited significantly lowest aluminium contents of 58.02 ± 17.43 and $69.23\pm18.28 \ \mu gg^{-1}$, respectively in their fats. However, the ability of fish organs like kidney, liver and gills to accumulate aluminium in both types of fish species remained statistically significant (Table 1 and 2).

Arsenic: The mean arsenic concentrations in the body organs of carnivore fish were significantly higher than that observed in herbivorous fish species. Both herbi– and carnivore fish species accumulated significantly higher

arsenic in their liver as 3.22 ± 0.84 and $4.41\pm1.07 \ \mu gg^{-1}$, closely followed by the accumulations in kidney with the mean arsenic concentrations of 3.17 ± 0.84 and $4.28\pm1.10 \ \mu gg^{-1}$, respectively. However, the difference between fish liver and kidney, for the accumulation of arsenic, remained statistically non-significant. The fats in both herbi– and carnivore fish species exhibited significantly lowest ability to concentrate arsenic in their bodies (Table 1 and 2).

Barium: Barium accumulation was significantly higher in both liver and kidney, with non-significant difference, of herbivorous fish while carnivore fish had significantly higher barium $(0.40\pm0.11 \ \mu gg^{-1})$ in their liver, followed by that in kidney and gills with the mean concentrations of 0.37 ± 0.10 and $0.34\pm0.11 \ \mu gg^{-1}$, respectively. Both herbi– and carnivore fish species showed significantly minimum ability to bio-accumulate barium in their fats. However, these accumulations were significantly higher in carnivorous fish species (Table 1 and 2).

Chromium: The chromium contents in the liver of both herbi– and carnivore fish species were significantly higher as 6.31 ± 1.48 and $9.07\pm1.35 \ \mu gg^{-1}$ respectively, followed by that in kidney and gills. All the three carnivore species showed significantly higher chromium in their body organs than that of herbivorous species (Table 1 and 2).

Nickel: The uptake and accumulation of nickel in the liver of both herbi– and carnivore fish species were significantly higher, followed by that in kidney and gills with statistically significant differences (Table 1). The fats in both herbi- and carnivore species had significantly least nickel contaminations of 1.04 ± 0.36 and $1.72\pm0.65 \ \mu gg^{-1}$, respectively (Table 2). The tendency of carnivore fish to bio-accumulate nickel in their body organs was significantly higher than that observed in herbivore fish.

Zinc: Both herbi– and carnivore species of fish exhibited significant tendencies to bio-accumulate zinc in their liver, with the concentrations of 84.77 ± 26.23 and $124.79\pm11.91 \ \mu gg^{-1}$, respectively, followed by the accumulation of this metal in kidney and gills with statistically significant differences (Table 1). The fats in both herbi– and carnivore fish species had significantly least amounts of zinc as 24.10 ± 9.89 and $41.45\pm8.53 \ \mu gg^{-1}$, respectively (Table 2). The body organs of carnivore fish exhibited significantly higher tendency to bio-accumulate zinc ($80.08\pm27.43 \ \mu gg^{-1}$) than that of herbivorous fish having the mean zinc contamination of $51.64\pm19.75\mu gg^{-1}$.

Both herbi– and carnivore fish species at Shahdara bridge were found significantly contaminated with aluminium and arsenic, followed by the fish collected from Baloki headworks and Sidhnai barrage (Table 3). The fish at Shahdara bridge was significantly contaminated with barium and chromium, followed by the fish sampled from the Baloki headworks and Sidhnai barrage. However, there was non-significant difference between Shahdara bridge and Baloki headworks to cause barium toxicity in the fish body. Nickel contamination was significantly higher in carnivore fish at Baloki headworks while herbivorous fish at Shahdara bridge

Table 1: Metal concentration (μgg^{-1}) of metals in the body organs of fish collected from the river Ravi

Fish Types	Metal concentrations in fish body organs (µgg ⁻¹)							
	Gills	Liver	Kidney	Intestine	Reproductive	Skin	Muscle	Fins
					Organs			
Herbivore	128.14±17.01c	152.66±19.60a	145.58±17.52b	126.70±12.38c	116.36±16.64d	105.20±14.91ef	79.94±12.59h	100.26±9.53f
Carnivore	145.64±10.04c	169.83±11.30a	160.67±11.10b	134.48±14.13d	126.03±11.15ef	117.88±14.04f	92.94±14.52j	108.27±12.80hg
Herbivore	2.79±0.80b	3.22±0.84a	3.17±0.84a	2.92±0.85ab	2.82±0.86b	2.62±0.84c	1.82±0.69f	2.47±0.88d
Carnivore	3.96±1.06bc	4.41±1.07a	4.28±1.10a	4.04±1.06b	3.92±1.04bc	3.75±1.03c	2.70±0.85e	3.65±1.04c
Herbivore	0.24±0.08b	0.29±0.09a	0.27±0.09a	0.24±0.09b	0.21±0.08c	0.18±0.07d	0.11±0.08f	0.17±0.06d
Carnivore	0.34±0.11c	0.40±0.11a	0.37±0.10b	0.33±0.10c	0.31±0.09c	0.28±0.10d	0.17±0.08f	0.25±0.08de
Herbivore	3.69±1.44 c	6.31±1.48 a	5.54±0.98b	3.05±1.22cd	2.94±1.28d	3.27±0.50c	I.38±0.42h	2.24±0.94f
Carnivore	6.70±1.37c	9.07±1.35 a	8.18±1.27b	5.80±1.28d	5.66±1.68d	4.82±0.89e	2.32±0.59i	3.90±0.76g
Herbivore	3.07±0.74b	4.66±0.72 a	4.76±0.95a	2.49±1.04c	2.35±0.99d	2.14±0.89e	1.60±0.59h	1.95±0.68f
Carnivore	6.01±1.63c	7.28±1.65 a	6.80±1.72b	5.35±1.54d	5.09±1.54e	3.97±1.29f	2.58±1.03g	4.00±1.51f
Herbivore	65.20±19.41c	84.77±26.23a	78.95±22.41b	62.72±20.38c	57.58±16.90d	45.62±14.82e	29.60±9.85h	39.06±13.84f
Carnivore	101.66±9.57c	124.79±11.91a	117.84±20.22b	93.61±9.14d	86.95±8.06e	74.27±7.11f	48.47±5.74i	66.11±8.58g
	Herbivore Carnivore Herbivore Carnivore Herbivore Carnivore Herbivore Carnivore Herbivore Carnivore Herbivore	Gills Herbivore 128.14±17.01c Carnivore 145.64±10.04c Herbivore 2.79±0.80b Carnivore 3.96±1.06bc Herbivore 0.24±0.08b Carnivore 0.34±0.11c Herbivore 6.69±1.44 c Carnivore 3.07±0.74b Carnivore 3.07±0.74b Carnivore 6.01±1.63c Herbivore 6.520±19.41c	Gills Liver Herbivore 128.14±17.01c 152.66±19.60a Carnivore 145.64±10.04c 169.83±11.30a Herbivore 2.79±0.80b 3.22±0.84a Carnivore 3.96±1.06bc 4.41±1.07a Herbivore 0.24±0.08b 0.29±0.09a Carnivore 0.34±0.11c 0.40±0.11a Herbivore 3.69±1.44 c 6.31±1.48 a Carnivore 6.70±1.37c 9.07±1.35 a Herbivore 3.07±0.74b 4.66±0.72 a Carnivore 6.01±1.63c 7.28±1.65 a Herbivore 65.20±19.41c 84.77±26.23a	Gills Liver Kidney Herbivore 128.14±17.01c 152.66±19.60a 145.58±17.52b Carnivore 145.64±10.04c 169.83±11.30a 160.67±11.10b Herbivore 2.79±0.80b 3.22±0.84a 3.17±0.84a Carnivore 3.96±1.06bc 4.41±1.07a 4.28±1.10a Herbivore 0.24±0.08b 0.29±0.09a 0.27±0.09a Carnivore 0.34±0.11c 0.40±0.11a 0.37±0.10b Herbivore 3.69±1.44c 6.31±1.48a 5.54±0.98b Carnivore 6.70±1.37c 9.07±1.35a 8.18±1.27b Herbivore 3.07±0.74b 4.66±0.72a 4.76±0.95a Carnivore 6.01±1.63c 7.28±1.65a 6.80±1.72b Herbivore 65.20±19.41c 84.77±26.23a 78.95±22.41b	Gills Liver Kidney Intestine Herbivore 128.14±17.01c 152.66±19.60a 145.58±17.52b 126.70±12.38c Carnivore 145.64±10.04c 169.83±11.30a 160.67±11.10b 134.48±14.13d Herbivore 2.79±0.80b 3.22±0.84a 3.17±0.84a 2.92±0.85ab Carnivore 3.96±1.06bc 4.41±1.07a 4.28±1.10a 4.04±1.06b Herbivore 0.24±0.08b 0.29±0.09a 0.27±0.09a 0.24±0.09b Carnivore 0.34±0.11c 0.40±0.11a 0.37±0.10b 0.33±0.10c Herbivore 3.69±1.44 c 6.31±1.48 a 5.54±0.98b 3.05±1.22cd Carnivore 6.70±1.37c 9.07±1.35 a 8.18±1.27b 5.80±1.28d Herbivore 3.07±0.74b 4.66±0.72 a 4.76±0.95a 2.49±1.04c Carnivore 6.01±1.63c 7.28±1.65 a 6.80±1.72b 5.35±1.54d Herbivore 3.07±0.74b 4.65±0.372.37 78.95±22.41b 62.72±20.38c	Gills Liver Kidney Intestine Reproductive Organs Herbivore 128.14±17.01c 152.66±19.60a 145.58±17.52b 126.70±12.38c 116.36±16.64d Carnivore 145.64±10.04c 169.83±11.30a 160.67±11.10b 134.48±14.13d 126.03±11.15ef Herbivore 2.79±0.80b 3.22±0.84a 3.17±0.84a 2.92±0.85ab 2.82±0.86b Carnivore 3.95±1.06bc 4.41±1.07a 4.28±1.10a 4.04±1.06b 3.92±1.04bc Herbivore 0.24±0.08b 0.29±0.09a 0.27±0.09a 0.24±0.09b 0.21±0.08c Carnivore 0.34±0.11c 0.40±0.11a 0.37±0.10b 0.33±0.10c 0.31±0.09c Herbivore 3.69±1.44 c 6.31±1.48 a 5.54±0.98b 3.05±1.22cd 2.94±1.28d Carnivore 6.70±1.37c 9.07±1.35 a 8.18±1.27b 5.80±1.28d 5.66±1.68d Herbivore 3.07±0.74b 4.66±0.72 a 4.76±0.95a 2.49±1.04c 2.35±0.99d Carnivore 6.01±1.63c 7.28±1.65a 6.80±1.72b 5.35±1.54d 5.09±1.54e	Gills Liver Kidney Intestine Reproductive Organs Skin Herbivore 128.14±17.01c 152.66±19.60a 145.58±17.52b 126.70±12.38c 116.36±16.64d 105.20±14.91ef Carnivore 145.64±10.04c 169.83±11.30a 160.67±11.10b 134.48±14.13d 126.03±11.15ef 117.88±14.04f Herbivore 2.79±0.80b 3.22±0.84a 3.17±0.84a 2.92±0.85ab 2.82±0.86b 2.62±0.84c Carnivore 3.96±1.06bc 4.41±1.07a 4.28±1.10a 4.04±1.06b 3.92±1.04bc 3.75±1.03c Herbivore 0.24±0.08b 0.29±0.09a 0.27±0.09a 0.24±0.09b 0.21±0.08c 0.18±0.07d Carnivore 0.34±0.11c 0.40±0.11a 0.37±0.10b 0.33±0.10c 0.31±0.09c 0.28±0.10d Herbivore 3.69±1.44 c 6.31±1.48 a 5.54±0.98b 3.05±1.22cd 2.94±1.28d 3.27±0.50c Carnivore 6.70±1.37c 9.07±1.35 a 8.18±1.27b 5.80±1.28d 5.66±1.68d 4.82±0.89e Herbivore 3.07±0.74b 4.66±0.72 a 4.76±0.	Gills Liver Kidney Intestine Reproductive Organs Herbivore 128.14±17.01c 152.66±19.60a 145.58±17.52b 126.70±12.38c 116.36±16.64d 105.20±14.91ef 79.94±12.59h Carnivore 145.64±10.04c 169.83±11.30a 160.67±11.10b 134.48±14.13d 126.03±11.15ef 17.88±14.04f 92.94±12.59h Herbivore 2.79±0.80b 3.22±0.84a 3.17±0.84a 2.92±0.85ab 2.82±0.86b 2.62±0.84c 1.82±0.69f Carnivore 3.95±1.06bc 4.41±1.07a 4.28±1.10a 4.04±1.06b 3.92±1.04bc 3.75±1.03c 2.70±0.85e Herbivore 0.24±0.08b 0.29±0.09a 0.27±0.09a 0.24±0.09b 0.21±0.08c 0.18±0.07d 0.11±0.08f Carnivore 0.34±0.11c 0.40±0.11a 0.37±0.10b 0.33±0.10c 0.31±0.09c 0.28±0.10d 0.17±0.08f Herbivore 3.69±1.44c 6.31±1.48a 5.54±0.98b 3.05±1.22cd 2.94±1.28d 3.27±0.50c 1.38±0.42h Carnivore 6.70±1.37c 9.07±1.35 a 8.18±1.27b 5.80±1.28d

Table 2: Mean concentration $(\mu gg^{\text{-}1})$ of metals in the scales, bones and fats of fish

Metals	Fish Types	Metal concentrations in fish body organs				
		Scales	Bones	Fats		
Aluminium	Herbivore	105.20±10.75ef	90.71±14.34g	58.02±17.43h		
	Carnivore	113.32±13.39g	101.27±13.34i	69.23±18.28k		
Arsenic	Herbivore	2.57±0.82cd	2.14±0.76e	1.13±0.64f		
	Carnivore	3.69±1.05c	3.09±0.79d	1.87±1.04f		
Barium	Herbivore	0.19±0.07d	0.14±0.07e	0.06±0.06g		
	Carnivore	0.28±0.09d	0.22±0.08e	0.11±0.08g		
Chromium	Herbivore	2.82±0.76e	1.91±0.65g	0.93±0.33i		
	Carnivore	4.20±0.64ef	3.48±0.50gh	1.64±0.60j		
Nickel	Herbivore	2.01±0.61fg	1.87±0.58g	1.04±0.36i		
	Carnivore	4.12±1.51f	3.52±1.33g	1.72±0.65h		
Zinc	Herbivore	43.10±13.58e	37.34±13.56g	24.10±9.89i		
	Carnivore	69.57±6.13g	56.15±6.39h	41.45±8.53j		

Means with similar letters in a single row and their respective means in a column are statistically similar at P<0.05.

Table 3: Metal concentration ($\mu g~g^{\prime l})$ of metals in the bodies of herbivore and carnivorous fish collected from three sampling stations of the river Ravi

Metals	Fish		Sampling Stations	
	species			
		Shahdara bridge	Baloki headworks	Sidhnai barrage
Aluminium Herbivore		121.35±7.65a	112.03±10.65b	96.29±5.57c
	Carnivore	131.90±8.42a	115.91±12.62b	117.52±5.94b
	Herbivore	3.11±0.49a	2.46±0.66b	1.98±0.75c
Arsenic	Carnivore	4.61±0.83a	3.27±0.81b	2.86±0.42c
	Herbivore	0.25±0.04a	0.21±0.03b	0.11±0.05c
Barium	Carnivore	0.33±0.05a	0.32±0.06a	0.18±0.06b
	Herbivore	3.74±0.44a	2.47±0.23c	3.08±0.86b
Chromiun	n Carnivore	5.94±0.40a	4.48±0.39b	4.79±0.65b
	Herbivore	1.94±0.27c	2.62±0.36b	3.07±0.68a
Nickel	Carnivore	4.26±0.77b	5.90±1.03a	3.60±0.78c
	Herbivore	71.89±5.97a	38.54±5.95c	44.50±6.99b
Zinc	Carnivore	84.93±3.99a	78.61±5.22b	76.69±7.28b
Single row	moons are	non cignificant at	P<0.05	

Single row means are non-significant at P<0.05.

contamination. Zinc exhibited higher nickel contamination was significantly higher $(71.89\pm5.97 \ \mu gg^{-1})$ in herbivorous fish at Shahdara bridge, followed by the contamination levels of 44.50 \pm 6.99 and 38.54 \pm 5.97 μ gg⁻¹ recorded in the fish sampled from Sidhnai barrage and Baloki headworks, respectively. However, all these contamination levels were significantly variable. Carnivore fish were significantly more contaminated with zinc at Shahdara bridge ($84.93 \pm 3.99 \ \mu gg^{-1}$), followed by the contamination levels of 78.61±5.22 and 76.69±7.28 μ gg⁻¹ in the fish at Baloki headworks and Sidhnai barrage, respectively. However, there was non-significant difference between Baloki headworks and Sidhnai barrage to cause zinc contamination in carnivore fish. Carnivorous fish exhibited significantly higher tendency to bioaccumulate zinc in their body than that of herbivorous fish (Table 3). The regression equations computed reveal highly significant and direct dependence of all metals, except nickel, bio-accumulation in carnivore fish body on the extent of metallic ions in the body organs of herbivorous cyprinids This shows tissue specific bioaccumulation of metals in the bodies of carnivore fish depending upon their probable food i.e. herbivorous cyprinids in the river Ravi aquatic ecosystem (Table 4).

DISCUSSION

Heavy metals are the serious aquatic pollutants and their uptake and accumulation in the aquatic ecosystems, beyond safe limits, would cause direct consequences to the aquatic food chain and ultimately to the man (Rauf and Javed, 2007). The present investigation reveals that the mean annual toxicity of Al, As, Ba, Cr, Ni and Zn in the river Ravi at three main public fishing sites viz. Shahdara bridge, Baloki headworks and Sidhnai barrage fluctuated significantly. Heavy metals are persistent in surface waters in the form of colloidal, particulate and dissolved forms and rivers are known as the dominant pathway for the transport of metals (Miller et al., 2003). In the body organs of both herbi- and carnivorous fish species, the accumulation of Al, As, Ba, Cr, Ni and Zn were significantly higher in liver than that of other body organs. However, fish kidney and gills have also been associated with the higher bio-accumulation of metals in the fish body. The mechanism of trace metals bioaccumulation in fish is complex and diversified, varying with their chemistry, mode of action and metal species (Louma, 1983). The toxic levels of different metals found in both herbi- and carnivorous fish species were directly dependent upon the metallic eco-toxicity of the river Ravi, the ecological needs, metabolism and feeding patterns of various fish species sampled during this study period. Bioaccumulation of metals refers the amount consumed by an organism. Fish gills as a site of metallic ion entry can enhance lesions and ultimately cause damage to the gills (Bols et al., 2001). All the organs of both herbi- and carnivorous fish species showed significantly variable accumulation of metals with the sequence of liver > kidney > gills > intestine > reproductive organs > scales > fins > bones > muscle > fats. Fish liver and kidney accumulated significant quantities of all metals while

Table 4: Relationships between herbivorous and carnivore fish for the uptake and accumulation of metals in their bodies

Metal	Mean body conc	entrations (µgg ⁻¹)	Regression Equation		R ²
-	Herbivore fish (x)	Carnivore fish (y)	y= a + bx		
Aluminium	109.89±12.67	121.78±8.80	Carnivorous fish = 50.08 + 0.65 (Herbivorous fish) (0.10) ^{p<0.001}	0.7460	0.5565
Arsenic	2.52±0.57	3.58±0.92	Carnivorous fish = $0.93 + 1.05$ (Herbivorous fish) $(0.14)^{p<0.001}$	0.8008	0.6412
Barium	0.19±0.07	0.28±0.08	Carnivorous fish = $0.09 + 1.02$ (Herbivorous fish) $(0.11)^{p<0.001}$	0.8509	0.7240
Chromium	3.10±0.64	5.07±0.77	Carnivorous fish = $2.61 + 0.79$ (Herbivorous fish) $(0.12)^{p<0.001}$	0.7592	0.5763
Nickel	2.54±0.57	4.59±1.18	Carnivorous fish = $3.57 + 0.40$ (Herbivorous fish) $(0.33)^{N.S.}$	0.2026	0.0411
Zinc	51.64±17.79	80.08±4.31	Carnivorous fish = $66.84 + 0.26$ (Herbivorous fish) $(0.061)^{p<0.001}$	0.6039	0.3647

(Single row means are non-significant at P<0.05).

these accumulations were significantly lowest in muscle and fats. Fish kidney as its role to detoxify metals has also accumulated significant amounts of heavy metals (Vinodhini and Narayanan, 2008). The differences for the metals accumulation tendencies of various fish organs are basically attributed to the differences in physiological function of each organ in fish body (Karuppasamy, 2004). The function and ability of specific organs to regulate metals are the factors to affect the accumulation differences in various tissues (Murugan et al., 2008). The differences in various tissues for the accumulations of Al, As, Ba, Cr, Ni and Zn might be the result of their capacity to induce metal-binding proteins such as metallothioneins (Canli and Atli, 2003). The metallic ions would become biologically magnified when taken up by the fish from the polluted waters and start accumulation in fish tissues. Such uptakes are significantly pronounced in fish liver, gills, stomach, kidney and other organs depending upon the exposed concentration and species of metal (Fabris et al., 2006).

Fish liver, kidney and gill tissues showed significant ability to accumulate metals as observed during present investigation (Ahmad and Bibi, 2010). Bervoest et al. (2001) reported higher accumulation of copper in the liver of Gasterosteus aculeatus that followed the order: liver> kidney> gills> intestine. The fish fats showed significantly least Al, As, Ba, Cr, Ni and Zn concentrations than all the body organs. Ekmekci et al. (2000) studied heavy metal accumulation in the liver and fatty tissues of fish and showed that accumulation of metals in liver was higher than the adipose tissues. The mean concentrations of metals in the organs of both herbiand carnivorous fish species were in the order of Al > Zn> Cr > Ni > As > Ba. The exposure of metallic ions beyond the permissible limits, in the aquatic ecosystem (Jabeen, 2011) has resulted in the accumulation of higher quantities of metals in herbivorous fish species. However, significant escalation of metals in carnivorous fish species showed bio-magnification of all these metals further up the trophic level (Eimers et al., 2001).

Conclusions

The present research work reveals that the health status of river Ravi at three main public fishing sites viz. Shahdara bridge, Baloki headworks and Sidhnai barrage, with respect to Al, As, Ba, Cr, Ni and Zn toxicity in fish was significantly higher that showed variable accumulation patterns of these metals in fish body organs. However, fish liver, gills and kidney showed significantly higher tendencies to bio-accumulate all metals. This investigation also reveals significantly direct dependence of metallic toxicity of carnivorous fish on the extent of metals in herbivorous cyprinids. This shows tissue specific bio-accumulation of metals in the bodies of carnivore fish was depending upon their probable food i.e. herbivorous cyprinids in the river Ravi aquatic ecosystem. The potential of metallic toxicity danger may become more severe in future depending upon the extent of industrial and domestic wastewater influx into the river Ravi due to man-made activities in the adjacent areas.

Acknowledgements

The author is thankful to Higher Education Commission Pakistan (HEC) for funding this research endeavor under indigenous PhD fellowship scheme (Pin # 063 171664 Bm3 042).

REFERENCES

- Abu-Darwish MS, AH Al-Fraihat, SYA Al-Dalain, FU Afifi and JA Al-Tabbal, 2011. Determination of essential oils and heavy metals accumulation in *Salvia officinalis* cultivated in three intra-raw spacing in ash-shoubak, Jordan. *Int J Agric Biol*, 13: 981-985.
- APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 20th Ed, American Public Health Association, Washington, D.C.
- Ahmad MS and S Bibi, 2010. Uptake and bioaccumulation of water borne lead (Pb) in the fingerlings of a fresh water cyprinid, *Catla catla* L. J Anim Plant Sci, 20: 201-207.
- Bervoest L, R Blust and R Verheyen, 2001. Accumulation of trace metals in the tissues of three soined stickleback (*Gasterosteus* aculeatus) from natural freshwaters. Ecotoxicol Environ Safety, 48: 117-127.
- Bols NC, JL Brubacher, RC Ganassin and LEJ Lee, 2001. Ecotoxicology and innate immunity in fish. Dev Comp Immunol, 25: 853-873.
- Canli M and G Atli, 2003. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species, Environ Pollut, 12: 129-136.
- Donohue I, D Style, C Coxon and K Irvine, 2006. Importance of spatial and temporal patterns for assessment of risk of diffuse nutrient emissions to surface waters. J Hydrol, 304:183-192.
- Eimers RD, RD Evans and PM Welbourn, 2001. Cadmium accumulation in the fresh water isopod *Asellus racovitzai*: the relative importance of solute and particulate sources at trace concentrations. Environ Pollut, 111: 247-253.
- Ekmekci IFG, SV Yerli, Z Ayas and M Ozmen, 2000. Report: the effects of pollution on fish in Sariyar dam lake and its tributaries. Project No: 1846 Agriculture, Forestry and Food Technologies Research Grant Committee, Tubitak, The Scientific and Research Council of Turkey, Ankara.
- Fabris G, NJ Turoczy and F Stagnitti, 2006. Trace metal concentrations in edible tissue of snapper, flathead, lobster and abalone from costal waters of Victoria, Australia. Ecotoxicol Environ Safety, 63: 286-292.
- Gagnaire B, H Thomas-Guyon and T Renault, 2004. In vitro effects of cadmium and chromium on pacific oyster, *Crassostrea gigas* (Thunberg) haemocytes. Fish Shellfish Immunol, 10: 502-512.
- Gernhofer M, M Pawert, M Schramm, E Muller and R Triebskorn, 2001. Ultra structural biomarkers as tools to characterize the health status of fish in contaminated streams. J Aquat Ecosyst Stress Recov, 8: 241-260.
- Jabeen G, 2011. Studies on fish species specific metals bioaccumulation patterns in relation to water, sediments, plankton and fish in the river Ravi, Pakistan. Ph D Thesis. Dept. of Zoology and Fisheries. Univ Agric, Faisalabad, Pakistan, pp: 184.

- Karuppasamy R, 2004. Evaluation of Hg concentration in the tissue of fish, Channa punctatus (Bloch.) in relation to short and long-term exposure to phenyl mercuric acetate. J Plat Jubilee A U, 40: 197– 204.
- Louma SN, 1983. Bioavailability of trace metals to aquatic organisms a review. Sci Total Environ, 28: 1-22.
- Mendil D, Z Demirci, M Tuzen and M Soylak, 2010. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea. J AOAC Int, 92: 1580-1586.
- Miller GG, LI Sweet, JV Adams, GM Omann, DR Passino-Reader and PG Meter, 2002. In vitro toxicity and interactions of environmental contaminants (Arochlor 1254 and mercury) and immunomodulatory agents (lipopolysaccharides and cortisol) on thymocytes from lake trout (Salvelinus namaycus). Fish and Shellfish Immunol, 13: 11-26.
- Miller CV, Foster GD and BF Majedi, 2003. Baseflow and stormflow metal fluxes from two small agricultural catchments in the coastal plain of Chesapeake Bay Basin, United States. Appl Geochem, 18: 483-501.
- Murugan SS, R Karuppasamy, K Poongodi and S Puvaneswari, 2008. Bioaccumulation pattern of zinc in freshwater fish *Channa punctatus* (Bloch.) after chronic exposure. Turksih J Fish Aquat Sci, 8: 55-59.

- Naeem M, A Salam, SS Tahir and N Rauf, 2010. Assessment of the essential element and toxic heavy metals in hatchery reared Oncorhynchus mykiss. Int. J Agric Biol, 12: 935-938.
- Rauf A, 2009. Studies on metals eco-toxicity of the river Ravi stretch from Lahore to Baloki headworks, Pakistan. Ph D Thesis. Dept of Zoology and Fisheries, Univ Agric, Faisalabad, Pakistan, pp. 210.
- Rauf A and M Javed, 2007. Copper toxicity of water and plankton in the river Ravi, Pakistan. Int J Agric Biol, 9: 771-774.
- Sekabira K, HO Origa, TA Basamba, G Mutumba and E Kakudidi, 2010. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol, 7: 435-446.
- Shah AQ, TG Kazi, JA Baig, HI Afridi, GA Kandhro, MB Arain, SKD Wadhwa and NF Kolachi, 2010. Determination of inorganic arsenic species (As³⁺ andAs⁵⁺) in muscle tissues of fish species by electrothermal atomic absorptionspectrometry (ETAAS). Food Chem, 119: 840-844.
- Steel D, JH Torrie and A Dinkkey, 1996. Principles and Procedures of Statistics. 2nd Ed, McGraw Hill Book Co, Singapore.
- Venugopal T, L Giridharan and M Jayaprakash, 2009. Characterization and risk assessment studies of bed sediments of River Adyar-An application of speciation study. Int J Environ Res, 3: 581-598.
- Vinodhini R and M Narayanan, 2008. Bioaccumulation of heavy metals in organ of freshwater fish *Cyprinus carpio* (Common carp). Int J Environ Sci Technol, 5: 179-182.