Serum Chemistry Variables of Bengal Tigers (Panthera tigris tigris) Kept in Various Forms of Captivity

U. Farooq*, S. Sajjad1, M. Anwar1 and B.N. Khan2

University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur; 1Department of Zoology, Lahore College for Women University, Lahore; 2Lahore Zoological Gardens, Lahore, Pakistan

*Corresponding author: pathophysio@hotmail.com

ARTICLE HISTORY
Received: October 30, 2011
Revised: November 04, 2011
Accepted: November 10, 2011

KEY WORDS:
Aspartate transaminase
Creatinine
Panthera tigris tigris
Serum chemistry

ABSTRACT
There is a dearth of published literature regarding the effect of captivity on serum chemistry variables of tigers kept in the zoos and wildlife sanctuaries. The present study was hence conducted to determine and compare serum chemistry values in tigers of Bengal origin (Panthera tigris tigris) kept in captivity at Lahore zoo (LZ) (n=4) and in semi natural environment of Lahore Wildlife Park (LWP) (n=6), Pakistan. The tigers kept at LZ had significantly (P<0.05) higher mean concentrations of Cl- (108.6±0.57 versus 105.6±0.49 mmol/l) and a significantly lower creatinine (1.78±0.06 versus 3.04±0.35mg/dl) and AST values (41.66±0.77 versus 54.88±4.22 U/l) than tigers kept at LWP. No other significant differences in serum chemistry were observed for both forms of captivity. Results would be useful for the evaluation of physiological and pathological alterations in wild and captive tiger individuals and populations not only in Pakistan but also for other countries harboring the Bengal tigers.

INTRODUCTION
The serum chemistry profile is one of the most vital initial tests being commonly performed by the practitioners for diagnostic and therapeutic purposes. It provides an opportunity to clinically investigate the presence of different metabolites and other constituents in the body of the animal hence aiding in the assessment of physiological, nutritional and pathological status (Farooq et al., 2011). The blood chemistry of captive individual/animal is usually similar to blood chemistry of free-ranging individuals/populations (Sajjad et al., 2011). Hence the values obtained from captive individuals are compared to the values from domestic or captive individuals of same species (Moen et al., 2010). Many factors such as type of anesthesia capture method, time of blood collection or ecologic reasons associated with survival under natural conditions, however, may alter the physiologic status of wild-caught animals from that of captive animals (McPhee, 2003). The lack of literature regarding variations in blood picture of free-ranging felids kept in different modules of captivity inclines the practitioners to make the comparisons with domestic cats or captive animals for the purpose of physical and therapeutic evaluation.
females; whereas, the tigers of LWP (n=6) lived in social groups consisting of five males and one female. All the animals ranged from 1 to 4 years in age and from 140 to 170 kg in weight.

Standard capture and sampling protocol: Standard capture protocol was used and observed at both sites of study i.e., LZ and LWP (Sajjad et al., 2011). After capture, 5 ml blood was collected aseptically from the common tail vein (dorsal coccygeal vein) using disposable syringes and 23 gauge needles and transferred into vacu- tainers containing thixotropic gel separator for serum separation. The collection procedure was standardized by using the same personnel, same technique of restraint and same time of the day. Blood samples were transported in ice box to the department of Zoology, Lahore College for Women University, Lahore for analysis.

Serum chemistry analyses: Various serum chemistry values were analyzed using commercial kits as given below:

Chloride (Cl⁻), Sodium (Na⁺), Potassium (K⁺) and urea: Bioassay Systems QuantiChromTM Assay Kit (DICL-250), Bioassay Systems, Hayward CA, USA.

Creatinine, Bilirubin and Aspartate Transaminase (AST): RANDOX Kits (CR 510, BE 454 and AS 101), RANDOX Laboratories Ltd. Antrim, UK.

Alanine Transaminase (ALT) and Alkaline Phosphatase (APT): Ecoline ® 125, Diagnostica Merck Kit (KGA 64271), Dramstadt, Germany.

Statistical analysis: Data were expressed as mean±SD. Following homogeneity of variance, comparisons among and between animals kept in captivity at LZ and LWP was made using ANOVA and t-test through Microsoft Office Excel 2000.

RESULTS AND DISCUSSION

Comparative mean serum chemistry variables for tigers confined in captivity at LZ and LWP are given in Table 1. The results revealed that the tigers kept at LZ had significantly (P<0.05) higher mean concentrations of Cl (108.6±0.57 versus 105.6±0.49 mmol/l) and a significantly lower creatinine (1.78±0.06 versus 3.04±0.35 mg/dl) and AST values (41.66±0.77 versus 54.88±4.22 U/l) than tigers kept at LWP. No other significant differences were observed in the rest of serum chemistry variables between and within the tigers in both forms of captivity.

The serum chemistry variables of the present study include most of the tests of interest in a routine clinical pathology laboratory. The population sample under study is though small but for wildlife species it chalks out a baseline data for further extensive studies. Most of the values reported here were similar to earlier work done (Dunbar et al., 1997; Foster and Cunningham, 2009) however, certain differences were also observed.

The mean values of Cl for tigers kept at LZ in this study (108.6±0.57 mmol/l) were significantly higher than those kept at LWP (105.6±0.49 mmol/l). These values are not in line with the findings of previous workers as they have reported either higher or lower mean Cl⁻ levels for various felids. A lower mean value of 103.9±11.0 mmol/l has been reported by Foster and Cunningham (2009) while working on Florida panthers (Puma concolor cougar). Significantly higher values (123.6±4.01 mmol/l) have been reported by Marco et al. (2000) for captive European wildcats. Similarly, a higher mean value of 122.0±0.50 mmol/l has been reported by Ulysses et al. (1985) for Bengal tigers. The variation in our results is difficult to explain on any biological or physiological basis and could be related to individual variation (Dunbar et al., 1997).

Mean creatinine levels recorded for LZ and LWP captive tigers in this study (1.78±0.06 versus 3.04±0.35 mg/dl) were significantly lower for LZ captive tigers than their counterparts. However, the values are in range with those of Marco et al. (2000) who reported mean creatinine level of 1.30±0.29 mg/dl in captive European wildcats. Serum creatinine levels are related to the muscular mass of the animal, physical activity and dietary factor (Garica et al., 2010). Increased creatinine values in LWP harbored tigers may hence be attributed to increased physical activity.

The mean values of AST in this study for tigers kept at LZ and LWP (41.66±0.77 and 54.88±4.22 U/l) were significantly lower for LZ captive tigers than their counterparts. The values for both forms of captivity are in accordance with those of Marco et al. (2000) who reported a mean AST level of 46.2±14.0 U/l with a range of 23-74 U/l in European wildcats. Similarly, mean AST levels of 40.9±15.7 U/l for adult panthers have been reported by Foster and Cunningham (2009). Moen et al. (2010) while working on comparable serum chemistry of free-ranging and captive Canada lynx reported mean AST level of 105±6.00 and 35.00±2.00 U/l, respectively. High activities of muscle enzymes have been described in other species of wild felids due to strenuous exercise, struggling before handling and muscle damage from trapping, darting and anesthetic injection. Values for AST and ALT from wild caught Iberian lynx (Belltrnan et al., 1991) have shown similar patterns of variability in wild caught and captive individuals. Hence, the increase in AST levels in LWP captive tigers as compared to their counterparts of LZ is attributed to the stress of physical capture in a restraint cage.

Conclusions: The present study clearly indicates that environment, whether captive or semi-natural has significant effect on many of the serum chemistry variables. Lack of published literature regarding the effect of captivity on physiological variables for tigers in

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Tigers at LZ (n=04)</th>
<th>Tigers at LWP (n=06)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (mmol/l)</td>
<td>108.6±0.57<sup>*</sup></td>
<td>105.6±0.49</td>
</tr>
<tr>
<td>Sodium (mmol/l)</td>
<td>145.8±1.38</td>
<td>146.4±0.9</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>4.42±0.15</td>
<td>4.70±0.22</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td>107.3±4.99</td>
<td>91.7±22.4</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.78±0.06<sup>**</sup></td>
<td>3.04±0.35</td>
</tr>
<tr>
<td>Bilirubin (mg/dl)</td>
<td>0.34±0.01</td>
<td>0.34±0.01</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>41.66±4.89<sup>**</sup></td>
<td>54.88±4.22</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>50.10±10.14</td>
<td>31.88±4.57</td>
</tr>
<tr>
<td>APT (U/l)</td>
<td>48.10±4.89</td>
<td>43.10±3.0</td>
</tr>
</tbody>
</table>

Values with asterisk in a row differ significant at P≤0.05 from that in LWP group animals.
Pakistan makes this preliminary data as one of its kind; and envisages for further studies with a larger sample and added hematological variables. Evaluation of physiological and pathological alterations in wild and captive tiger individuals and populations can be made through these results. Furthermore, the results of the study can also be used as base line reference blood chemistry variables for the specie under study.

Acknowledgements: This work was completed in partial fulfillment of the requirements for the degree of Master in Science (MSc) in Zoology at Lahore College for Women University, Lahore, Pakistan. We are grateful to Mr. Asif, Director of Wildlife; Mr. Yusaf Pall, Director of Lahore zoo and Mr. Shafqat, Director of Lahore Wildlife Park for granting the permission to conduct this research. In addition, we thank the whole staff of Lahore zoo and Lahore Wildlife Park for the provision of positive feedback, skillful guidance and smooth implementation of the research design.

REFERENCES