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 Invertebrates rely on innate immunity to respond to the entry of foreign 
microorganisms. The prophenoloxidase (proPO) system plays crucial roles in 
crustacean innate immunity. White spot syndrome virus (WSSV) infection has 
recently been responsible for significant economic losses in many crayfish-
producing farms in China. We therefore aimed to examine the response of the 
proPO system to WSSV infection. The virulence of the virus, expression of the 
proPO gene, and phenoloxidase (PO) activity in six tissues from the red swamp 
crayfish Procambarus clarkii were investigated using LD50 tests, real-time 
polymerase chain reaction and spectrophotometry, after infection with different 
numbers of WSSV virions. The LD50 of the WSSV strain was 2.08 ×107 
virions/crayfish. proPO mRNA expression was increased in all studied tissues after 
infection with WSSV, except in the cuticle epidermis after infection with 2 × 107 
virions. proPO mRNA transcription was significantly increased in hemocytes and 
hepatopancreas, suggesting that P. clarkii might depend mainly on innate immunity 
for defense against viral pathogens. PO activity differed among different tissues 
during WSSV infection, suggesting that the proPO system might be activated by 
different mechanisms in different tissues in response to different viral stresses. 
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INTRODUCTION 

 
White spot syndrome virus (WSSV) belongs to the 

genus Whispovirus in family Nimavirida (Mayo, 2002). 
WSSV causes a serious disease in the shrimp aquaculture 
industry worldwide and is responsible for estimated 
annual global economic losses close to three billion 
dollars. Although the virus mainly causes high mortality 
in shrimps (Oidtmann and Stentiford, 2011), it has been 
reported to infect a wide range of other crustaceans, 
including crabs, lobsters, and crayfish (Liu et al., 2011). 
Despite considerable progress in WSSV characterization, 
there are currently no effective preventive or therapeutic 
measures against WSSV infection (Wang et al., 2013) and 
the understanding of the shrimp defense system in 
response to viral infection remains poor (Wang and 
Zhang, 2008 ).  

The red swamp crayfish, Procambarus clarkii, was 
introduced from Japan into Nanjing, China, in 1929 (Yue 
et al., 2010), since when it has become one of the most 
important economic species in China. The red swamp 
crayfish has recently been artificially propagated (Li et 
al., 2012a; Shui et al., 2012; Guan et al., 2013), but the 
sustainability and healthy development of the crayfish 
aquaculture industry in China are threatened by disease, 
particularly WSSV infection, which has the potential to 
cause significant economic losses in many crayfish-
producing farms (Li et al., 2012b). The rapid spread of 
WSSV makes it difficult to control, and drug treatments 
are currently unable to eliminate the infection. Selective 
breeding of WSSV-resistant crayfish may thus represent 
an effective preventive measure for white spot disease 
outbreaks. 

The prophenoloxidase (proPO) system is an 
important humoral immune factor in the innate immune 
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system. Crustacean innate immunity comprises humoral 
immunity represented by melanization via the proPO-
activating system, and cellular immunity represented by 
phagocytosis. Activation of the proPO cascade triggers 
proPO synthesis in hemocytes and its storage in granules 
(Jearaphunt et al., 2014). PO can catalyze the oxidation of 
phenolic substances to quinones, which are then further 
polymerized non-enzymatically to melanin (Cerenius et 
al., 2008). The activated innate immune system also 
employs phagocytosis to eliminate microbes or foreign 
particles. Investigation of the proPO-activating system in 
P. clarkii could improve our understanding of this system, 
and may thus be useful for developing strategies to 
prevent infectious diseases (Li et al., 2012b). In the 
previous study, proPO expression was increased in some 
tissues after stimulation by WSSV (Li et al., 2012b). 
Furthermore, not all WSSV-infected crayfish died, 
indicating the existence of WSSV-resistant crayfish. 
However, the effects of WSSV infection on proPO 
expression and PO activity in P. clarkii remain unclear. In 
the present study, the virulence of the virus, and the time- 
and organ-dependence of proPO mRNA transcription and 
PO activity in six tissues from P. clarkii infected with 
WSSV were investigated to understand proPO expression 
and PO activity in freshwater crayfish. The results might 
help in the management of crayfish farming and 
contribute to the selective breeding of WSSV-resistant 
crayfish in the future. 

 
MATERIALS AND METHODS 

 
Experimental P. clarkii preparation: P. clarkii, 35-40 g 
in body weight, were kept in aquaria with a circulating 
biofilter system, and fed twice daily with commercial 
feed. Each crayfish was confirmed to be WSSV-free as 
reported (Park et al., 2013).  
 
Preparation of WSSV solution: Hemocytes of WSSV-
infected crayfish were drawn and centrifuged at 3,000 g 
for 20 min at 4ºC. The supernatant was re-centrifuged and 
filtered through a 0.22-µm filter. WSSV in hemocytes was 
confirmed as above. WSSV-free hemocytes were prepared 
as a negative control. 
 
Determination of LD50: Dilutions of the WSSV strain 
were prepared. The desired numbers of virions were 
contained in 100 µL of PBS (pH 7.2). Each crayfish was 
infected with the WSSV strain from 6.25 × 106 to 1.0 × 
108 virions/crayfish by intramuscular injection. The 
control was injected with 100 µL PBS. The LD50 was 
calculated using the method of Reed and Muench (1938). 
 
WSSV infection: The viral inoculum was prepared as 
described (Wang et al., 2009). The control group was 
injected with 100 µL PBS. The three experimental groups 
were injected with 100 µL PBS containing the WSSV 
strain at 1 × 107, 2 × 107, and 3×107 virions per crayfish, 
respectively. 
 
Sample collection: Hemocytes were collected using 
anticoagulant-modified Alservier’s solution (pH 7.0, 1:1), 
and isolated by centrifugation at 800 g at 4 ºC for 15 min. 
Total RNA was extracted. The tissues were dissected out, 

and preserved in RNA protection liquid until RNA 
extraction. Five crayfish from each group were collected 
for real-time PCR at 0, 3, 6, 12, 24, 48, 72 and 96 hpi.  
 
Total RNA extraction and first-strand cDNA 
synthesis: Total RNA was extracted and first-strand 
cDNA was synthesized according to the protocols used by 
Li et al. (2012b).  
 
Tissue tropism of proPO: For each tissue, three pooled 
samples were collected, with each pooled sample derived 
from five crayfish. β-actin was used as a control, and RT-
PCR was performed using primers designed by Li et al. 
(2011) (Table 1). 
 
Quantification of proPO mRNA expression: Real-time 
PCR assays were carried out following the protocols used 
by Li et al. (2012b). The primers were showed in Table 1. 
The proPO expression level was calculated by 2-∆CT 
(Livak and Schmittgen, 2001). All data were given in 
terms of relative mRNA expressed as mean±SD.  
 
PO activity assay: PO activity was measured using L-
DOPA (L-3, 4-dihydroxyphenylalanine, Sigma) as the 
substrate and trypsin (Sigma) as the activator. L-DOPA 
buffer only was used as a control. One unit of enzyme 
activity was defined as an increase in absorbance of 0.001 
min–1 mg–1 protein (Ji et al., 2011). Tissues were 
homogenized in PBS (pH 7.2, 4ºC) and diluted to 0.1 
g/ml. PO activity in tissues was measured as above. 
 
Statistical analyses: For statistical analyses, mean±SD 
were calculated using Microsoft Excel 2003 and one-way 
analyses of variance (ANOVA) and cross-table analyses 
were performed using SPSS 13.0 software (SPSS). The 
data were analyzed by t-tests and P<0.05 was considered 
statistically significant. 

 
RESULTS  

 
LD50 of the virus: Virus virulence was assessed in five 
groups of 10 crayfish each. The LD50 of the WSSV strain 
was 2.08 × 107 virions/crayfish (Table 2). 
 
Tissue tropism of proPO: The expression levels of 
proPO mRNA in different tissues collected from normal 
crayfish were investigated by RT-PCR analysis. proPO 
transcripts were expressed in all the collected tissues (Fig. 
1), with higher levels in hemocytes and hepatopancreas, 
and lower levels in the branchia and heart. 
 
Expression of proPO in tissues after infection with 
WSSV at 1 × 107 virions/crayfish: The expression of 
proPO mRNA in P. clarkii tissues after infection with 
WSSV at 1 × 107 copies/crayfish is shown in Table 3. 
proPO expression increased in all six studied tissues. 
Expression of proPO in the branchia increased 
significantly from 6 to 48 h post-infection (hpi) in the 
experimental group (P<0.05), while proPO expression in 
the cuticle epidermis increased slowly from 3 to 24 hpi 
(P<0.05) and then slowly decreased from 24 to 96 hpi in 
the experimental group. Expression in hemocytes 
increased   significantly  (P<0.05)  from  6 to 96 hpi in the 
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Table 1: The primer sequences for analysis of proPO expression in the 
six tissues of Procambarus clarkii 

Primer Primer sequence (5’-3’) Position 
proPO RT 
PCR-F GCCAGGATAATACCCTACTC 801  

820 
proPO RT 
PCR-R TGTCATGGCAGAATGCCAGC 1,094  

1,075 
proPO 
QPCR-F  GCACAAGTTTGTGGACGACGTC 1,174  

1,195 
proPO 
QPCR-R GTCCATCTCAGCCCAGAGGAG 1,549  

1,529 
β-actin RT 
PCR-F GAYGAYATGGAGAAGATCTGG  

β-actin RT 
PCR-R CCRGGGTACATGGTGGTRCC  

β-actin 
QPCR-F  AGTAGCCGCCCTGGTTGTAGAC  

β-actin 
QPCR-R TTCTCCATGTCGTCCCAGT  

 
Table 2: The duration of the LD50 study of WSSV in Procambarus clarkii 
Group Challenge dose (virions) Dead % Value of LD50 (virions) 

1 1.0×108 100  

2.08×107 

2 5.0×107 70  
3 2.5×107 60  
4 1.25×107 40  
5 6.25×106 0  

control 0 0  

 

 
 
Fig. 1: Tissue tropism analysis of Procambarus clarkii prophenoloxidase 
(proPO) by a RT-PCR approach. Marker, DL2000; B, branchia; C, cuticle 
epidermis; Hc, hemocytes; Hp, hepatopancreas; Ht, heart; M, muscles. 
β-actin was used as an internal control to indicate and standardize the 
amount of the cDNA template in RT-PCR. 

experimental group, while expression of proPO in the 
heart increased slowly from 3 hpi, peaked at 12 hpi 
(P<0.05), and then slowly decreased from 24 to 96 hpi in 
the experimental group. proPO expression in the 
hepatopancreas increased from 3 to 96 hpi in the infected 
group, and showed significant up-regulation at 48 hpi 
(P<0.05) compared with the control group. The 
expression of proPO in muscle tissue increased from 6 to 
96 hpi in the experimental group, and then decreased from 
a maximum at 48 hpi to 96 hpi in the experimental group.     
 
Expression of proPO in tissues after infection with 
WSSV at 2 × 107 virions/crayfish: The expression 
profiles of proPO after infection with 2 × 107 copies 
WSSV are shown in Table 3. The mRNA levels of proPO 
were increased in the branchia and heart at 3 hpi, and 
reached a maximum at 12 hpi, while levels in the 
hepatopancreas were decreased at 24 hpi (P<0.05) and up-
regulated to a maximum at 48 hpi. The proPO levels in 
muscle and branchia tissues increased sharply to a peak at 
12 hpi, and then declined slowly to normal levels at 96 
hpi. In the cuticle epidermis, proPO expression slowly 
decreased to its lowest level at 12 hpi and was then up-
regulated sharply to a maximum at 24 hpi. The expression 
levels in the hemocytes increased slowly up to 24 hpi and 
remained at a high level until 96 hpi.  
 
Expression of proPO in tissues after infection with 
WSSV at 3 × 107 virions/crayfish: Expression levels of 
proPO increased in all six studied tissues after infection 
with 3 × 107 copies of WSSV. In the branchia, cuticle 
epidermis and hepatopancreas, proPO expression 
increased significantly (P<0.05) from 12 to 72 hpi in the 
experimental group, while levels increased significantly 
(P<0.05) from 6 to 48 hpi in the hemocytes and heart in 
the experimental group. The expression of proPO in the 
muscle increased slowly from 6 to 72 hpi in muscle, with 
a significant increase (P<0.05) from 12 to 48 hpi in the 
experimental group (Table 3).  

 
Table 3: The mRNA level expression of proPO after WSSV infection in the six tissues of Procambarus clarkii 

Tissue Dose 
(virions) 

Relative expression (hpi) 
0 3 6 12 24 48 72 96 

Branchia 
 

1 × 107 0.20±0.014 0.32±0.016  0.35±0.011a 0.46±0.020b 0.48±0.015b 0.36±0.012a 0.28±0.014 0.23±0.012 
2 × 107 0.20±0.015 0.28±0.013 0.31±0.018  0.44±0.019b 0.36±0.014b 0.32±0.015a 0.30±0.016a 0.23±0.014 
3 × 107 0.22±0.014 0.32±0.012 0.39±0.016  0.67±0.021b 0.56±0.014b 0.49±0.014b 0.42±0.014a 0.32±0.015 
Control 0.20±0.016 0.24±0.014 0.26±0.021  0.25±0.016  0.20±0.011 0.21±0.010 0.21±0.013 0.20±0.015 

Cuticle 
epidermis 

1 × 107 0.34±0.018 0.42±0.022 0.46±0.013    0.5±0.018 0.60±0.016b 0.53±0.014a 0.42±0.017 0.36±0.018 
2 × 107 0.34±0.020 0.29±0.021   0.3±0.017  0.32±0.032 0.42±0.022a 0.31±0.018 0.28±0.022 0.23±0.025 
3 × 107 0.33±0.017 0.39±0.024 0.45±0.016 0.52±0.019a 0.59±0.015b 0.50±0.012a   0.48±0.024a 0.36±0.022 
Control 0.36±0.015 0.38±0.022 0.40±0.014  0.34±0.024  0.33±0.014  0.34±0.016 0.35±0.018 0.33±0.024 

Haemocytes 

1 × 107 1.01±0.015 1.21±0.016 1.42±0.022  1.82±0.028b 2.32±0.021b 1.81±0.015b  1.61±0.032a  1.41±0.025a 
2 × 107 1.12±0.022 1.22±0.018 1.33±0.019 1.41±0.025a 1.61±0.016a  1.22±0.024 1.42±0.024 1.21±0.018 
3 × 107 1.11±0.018 1.21±0.015  1.71±0.014 a 2.41±0.026b 3.11±0.022b 2.13±0.022b 1.41±0.031 1.22±0.022 
Control 0.92±0.016 1.02±0.016 1.12±0.016  1.01±0.023  1.21±0.024  1.11±0.023 1.06±0.019 1.02±0.031 

Heart 

1 × 107 0.31±0.022 0.33±0.031 0.35±0.018  0.46±0.023a  0.40±0.018  0.36±0.022 0.33±0.019 0.31±0.018 
2 × 107 0.32±0.025 0.34±0.022 0.35±0.022  0.46±0.025a  0.40±0.015 0.36±0.031 0.33±0.024 0.32±0.014 
3 × 107 0.32±0.015 0.38±0.018   0.56±0.024b  0.50±0.019a  0.46±0.019a 0.40±0.019 0.36±0.022 0.33±0.015 
Control 0.30±0.017 0.31±0.016 0.30±0.026 0.32±0.018  0.31±0.022 0.30±0.016 0.31±0.021 0.30±0.024 

Hepatopancreas 

1 × 107 0.81±0.022 0.84±0.031 0.89±0.026  0.94±0.019a  0.99±0.028  1.20±0.017a 0.90±0.017 0.84±0.016 
2 × 107 0.82±0.025 0.86±0.022 0.90±0.025   0.96±0.021 1.21±0.032a  1.40±0.013a 0.95±0.025 0.86±0.022 
3 × 107 0.79±0.019 0.96±0.018 0.99±0.022  1.32±0.023a 1.58±0.026b   1.36±0.015b   1.25±0.027a 0.98±0.024 
Control 0.80±0.023 0.81±0.026 0.82±0.024 0.80±0.020  0.81±0.022 0.82±0.021 0.81±0.023 0.81±0.018 

Muscle 

1 × 107 0.61±0.032 0.65±0.041 0.68±0.032 0.72±0.032 0.96±0.018a   1.10±0.031b 0.89±0.015 0.64±0.026 
2 × 107 0.63±0.019 0.66±0.036 0.74±0.012   1.05±0.026b 0.97±0.015a 0.88±0.028 0.76±0.023 0.68±0.022 
3 × 107 0.60±0.025 0.68±0.028 0.74±0.012   0.93±0.040a  0.85±0.022 0.86±0.019 0.78±0.018 0.66±0.018 
Control 0.60±0.035 0.61±0.025   0.6±0.012 0.61±0.034  0.62±0.019 0.60±0.022 0.62±0.026 0.61±0.016 

The superscript a means P<0.05, b means P<0.01 (n=5). 
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Fig. 2:  PO activity after 1× 107, 2× 107 and 3 × 107 virions/crayfish WSSV infection in the six studied tissues of P. clarkii at 0, 3, 6, 12, 24, 48, 72, and 
96 hpi. a) 1 × 107 virions/crayfish WSSV infected group; b) 2 × 107 virions/crayfish WSSV infected group; c) 3 × 107 virions/crayfish WSSV infected 
group. Error bars represent the ±SD of five crayfish across three independent measure (n=5, ∗P<0.05, ∗∗P<0.01). 
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PO activity in tissues after infection with WSSV at 1 × 
107 virions/crayfish: The PO activities in tissues after 
treatment with WSSV at 1 × 107 virions/crayfish are 
shown in Fig. 2a. PO activities were higher in the 
branchia, cuticle epidermis, hepatopancreas, hemocytes, 
and muscle from 6 hpi, compared with the PBS-injected 
group. PO activity was significantly increased (P<0.05) in 
the branchia at 12 hpi and further increased at 24 hpi. PO 
was also significantly increased in cuticle epidermis and 
muscle in the experimental group from 12-24 hpi 
(P<0.05). PO activity was significantly increased in the 
hepatopancreas (P<0.05) at 6 and 24 hpi, and further 
increased at 12 hpi in the experimental group. However, 
PO activity in the heart was lower in the experimental 
group than in the PBS-injected group, reaching a 
minimum at 72 hpi. 
 
PO activity in tissues after infection with WSSV at 2 × 
107 virions/crayfish: PO activities in the branchia, 
hemocytes, heart, hepatopancreas, and muscle were 
increased from 6-96 hpi with WSSV at 2 × 107 
virions/crayfish, but decreased in cuticle epidermis. PO 
activities were significantly increased in hemocytes 
(P<0.05) at 24, 48, and 96 hpi, and further increased 
(P<0.01) at 72 hpi in the experimental group. PO 
activities were significantly increased (P<0.05) in the 
branchia, heart, hepatopancreas, and muscle in the 
experimental group at 48 hpi. However, PO activity was 
significantly decreased in the cuticle epidermis (P<0.05) 
at 24 hpi (Fig. 2b). 
 
PO activity in tissues after infection with WSSV at 3 × 
107 virions/crayfish: PO activity increased in all six 
studied tissues of P. clarkii after infection with WSSV at 
3 × 107 virions/crayfish. Activities in the branchia and 
cuticle epidermis were significantly increased (P<0.05) at 
48 and 72 hpi, respectively. Activities in the hemocytes, 
hepatopancreas and muscle were highly significantly 
increased (P<0.01) at 48 hpi, and significantly increased 
in heart (P<0.05) from 48-72 hpi in the experimental 
group (Fig. 2c). 

 
DISCUSSION 

 
WSSV has caused significant economic losses to the 

shrimp-farming industry worldwide since 1993 (Musthaq 
et al., 2011). The red swamp crayfish is a host of WSSV, 
which has recently become one of the most serious causes 
of disease in cultivated crayfish in China (Li et al., 
2012b). There are currently no effective measures for 
controlling virulence of WSSV which is dependent on its 
propagation ability and tissue tropism, and host resistance 
which plays significant roles in determining infection 
outcomes (Sun et al., 2013). It is therefore essential to 
elucidate the interactions between WSSV and its host(s), 
in terms of both the host immune response and WSSV 
pathogenesis. In the present study, the virulence of WSSV 
and the molecular mechanisms in crayfish infected were 
investigated with different numbers of WSSV virions. The 
LD50 of WSSV was 2.08 × 107 virions/crayfish. The 
results suggested that the strain of WSSV used in the 
present study was not 100% lethal to crayfish under 
laboratory conditions, suggesting the existence of WSSV- 

resistant crayfish that may be suitable for selective 
breeding for WSSV resistance.   

Analysis of the tissue distribution of proPO mRNA 
showed that it was more highly-expressed in hemocytes 
and hepatopancreas, which was consistent with previous 
reports (Liu et al., 2006; Li et al., 2012b; Liu et al., 2013). 
In this study, proPO expression levels and PO activity 
post-WSSV infection varied among crayfish tissues in 
time- and concentration-dependent manners. These results 
indicated that the crayfish defense against the invading 
virus involves the induction and secretion of proPO into 
the circulating hemolymph, confirming the importance of 
proPO mRNA expression in hemocytes and the 
hepatopancreas as an important factor in the defense 
against WSSV infection in red swamp crayfish P. clarkii 
and other crustaceans.  

The proPO system plays a vital role in antigen 
recognition and denaturation in innate immunity 
(Cerenius et al., 2008), and is normally activated by 
invading microorganisms or parasites. Like other 
crustaceans, P. clarkii depends on its innate immune 
system to defend itself against pathogens. The apparent 
up-regulation of PO activity in hemocytes and the 
hepatopancreas in WSSV-infected P. clarkii in the present 
study indicated the involvement of these tissues in the 
crayfish antiviral immune response, in accordance with 
previous reports in Scylla serrata (Liu et al., 2011). 

The expression profiles of proPO mRNA after 
infection with different numbers of WSSV virions will 
help to clarify the implications of its function in the 
defense system (Jearaphunt et al., 2014). In this study, 
proPO mRNA transcription was significantly increased in 
hemocytes and the hepatopancreas at most time points 
after infection with WSSV, confirming the idea that P. 
clarkii might depend mainly on the innate immune system 
to defend against viral pathogens. Furthermore, the results 
also suggest that P. clarkii attempted to control 
pathogenic microbes such as WSSV at various time points 
post-infection. Variations in proPO mRNA expression 
levels among tissues indicates that proPO was actively 
involved in the immune system of crayfish, thus helping it 
fight against the entry of pathogens.  

Calreticulin responds to WSSV infection by 
increasing mRNA and protein expression and by delaying 
apoptosis (Watthanasurorot et al., 2014). It is possible that 
proPO might interfere with WSSV replication through 
binding nucleocapsid proteins. This possibility should be 
investigated in future studies. 

In the present study, PO activity was high in P. 
clarkii infected with different numbers of virions. These 
observations indicated that P. clarkii responded to WSSV 
injection, as shown by the detection of high proPO 
expression during the study period, and further suggested 
that high levels of proPO and PO may enhance the 
resistance of P. clarkii to WSSV (Clark et al., 2013). 
 
Conclusion: In this study, the results of tissue tropism, 
real-time PCR analysis and PO activity assays showed 
that the proPO played an important role in the crayfish 
immune system, and that its expression might be activated 
by different mechanisms in different tissues in response to 
viral stress. However, further studies are needed to 
determine if there are other gene(s) trigger an immune 
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response or antiviral activity in response to WSSV 
infection in P. clarkii. More work is also needed to 
identify the mechanism of resistance against WSSV in P. 
clarkii. Such information would help to develop WSSV 
resistance in freshwater crayfish.  
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