

Pakistan Veterinary Journal

ISSN: 0253-8318 (PRINT), 2074-7764 (ONLINE) Accessible at: www.pvj.com.pk

RESEARCH ARTICLE

Serotypes, Genotypes, Virulence Factors and Antimicrobial Resistance Genes of *Escherichia coli* Isolated in Bovine Clinical Mastitis from Eastern China

Javed Memon¹, Jam Kashif², Nazir Hussain², Muhammad Yaqoob², Asghar Ali², Rehana Buriro², Jamila Soomro², Mohammad Farooque Hassan³, Benazir Sahito² and Fan Hongjie¹*

¹College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China; ²Sindh Agricultural University, Tandojam, Pakistan; ³Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan

*Corresponding author: fhj@njau.edu.cn

ARTICLE HISTORY (15-490)

Received:November 28, 2015Revised:June 22, 2016Accepted:June 26, 2016Published online:August 23, 2016Key words:E. coliGenotypesMastitisResistance genesSerotypesVirulenceVirulence

ABSTRACT

Coliform mastitis is still significantly problematic disease to treat and control in practice, which is testament to the intricacy and mutability of the condition. We examined 103 mastitis E. coli isolates collected from 22 dairy farms in eastern China, for their serotypes and prevalence of virulence and antimicrobial resistance genes. Of the sixteen serotypes characterized through serum agglutination test, O39 followed by O92 and O123 were the most predominant serovars. The genotyping of the isolates was also determined by using ERIC-PCR. Phylogenetic analysis of DNA fingerprints was performed by using SPSS data editor, which yielded ten distinct genotypes (A-J). 14 virulence genes and 10 antimicrobial resistance genes were checked in all 103 isolates by PCR assay. Most prevalent virulence genes were, TraT, FimH, papC, iucD, F4 (K88) and sfa; but F17A, F41, stx1, intimin, CNF1, CNF2, LT and ST were not present in any isolate. Among all investigated resistance genes, 48% isolates carried CTX-M and qnrS. In addition, tetA, tetB, sull, sul2 were also found in high frequency. Statistical analysis revealed an unconditional association between virulence and resistance genes as the P<0.05. To our knowledge, this is most updated report on serotypes, genotypes, prevalence of resistance and virulence genes, and their significant association with each other in mastitis E. coli isolates from eastern China.

©2016 PVJ. All rights reserved

To Cite This Article: Memon J, Kashif J, Hussain N, Yaqoob M, Ali A, Buriro R, Soomro J, Hassan MF, Sahito B and Hongjie F, 2016. Serotypes, genotypes, virulence factors and antimicrobial resistance genes of *Escherichia coli* isolated in bovine clinical mastitis from Eastern China. Pak Vet J, 36(4): 493-498.

INTRODUCTION

Mastitis E. coli is environment-originated opportunistic pathogen and considered as a common cause of bovine intra-mammary infection (IMI) subsequent of Staphylococcus aureus (Khan et al., 2013; Kempf et al., 2015). Pathogenesis of E. coli infection depends on some specific virulence factors that enhance their capability to colonize under some favorable condition, so far no specific virulence factor has been shown to cause coliform mastitis (Wenz et al., 2006; Blum and Leitner, 2013), however many studies have been carried out to detect the virulence genes in mastitis E. coli isolates (Suojala et al., 2011; Liu et al., 2014). The frequency of coliform mastitis is increasing among the countries, but very little is known about the gentic distribution and serotypes of E. coli isolates involved in bovine mastitis infection particularly in China. Serotyping and genotyping have substaintial importance in distinguishing the pathogenic and nonpathogenic bacteria, because particular serogroups are

constantly linked to certain clinical disorders (Kaper et al., 2004), so far link between E. coli serotypes and mastitis has not been well established, however pathogenic E. coli has been frequently isolated in clinical mastitis cases (Wenz et al., 2006). While genotyping helps in better understanding of clonal differences among the bacterial isolates from different regions on the basis of their genetic determinants mainly virulence and resistance genes (Kaper et al., 2004; Bandyopadhyay et al., 2012). E. coli has ability to develop the resistance against frequently used antimicrobials, which is one of the main reasons for treatment failure of coliform mastitis (Suojala et al., 2011). Accurate information about antimicrobial resistance and presence of resistance and virulence determinants is necessary for effective treatment, though studies have shown unconditional association between resistance and virulence genes of E. coli isolates (Aslam et al., 2012), which is likely due to their dissemination within strains through mobile genetic elements, especially plasmid (Yaqoob et al., 2013; Javed et al., 2015).

In China, particularly in eastern region, no recent epidemiological study focused on the prevalence of bovine coliform mastitis despite of increasing incidences worldwide. Therefore, the present study was carried out with objects: 1) to investigate the serotypes of *E. coli* strains characterized in mastitic milk, their genotypes to understand the biological relationship among isolates and 2) And probe for presence of virulence and antimicrobial resistance determinants for prognosis in effective treatment of coliform mastitis particularly in this region.

MATERIALS AND METHODS

E. coli Isolates: *E. coli* isolates (n=103) probed in this study, which were identified from 299 bovine clinical mastitis milk samples through a chain of laboratory techniques (Memon *et al.*, 2013). Briefly, bacterial culture of isolated pathogens was subjected to Gram stain, biochemical tests and specific media for *E. coli* identification (Chrom agar). The identified *E. coli* isolates were further verified through (16S rDNA) gene amplification assay and sequenced (Memon *et al.*, 2013).

Serotyping: *E. coli* isolates were retrieved from microorganism storage system and cultured overnight in Luria-Bertani broth at 37°C. The isolates were characterized for their serotypes through slide agglutination assay, for which 181"O" antigens and H7 antisera were purchased from China Institute of Veterinary Drugs Control, Beijing. The flagella antigen H7 was tested only in isolates belonging to O157 serovar. The serotyping was performed according to the previously described procedure (Schroeder *et al.*, 2002).

Detection of Virulence genes (VGs): Simple PCR was carried out to amplify the virulence and resistance genes in 103 isolates. Fourteen virulence genes were selected, which were previously reported for *E. coli* strains identified in mastitic milk including *F41*, *F17A*, *ST*, *LT* and *F4 (ETEC)*, *sfa*, *Trat* and *FimH* (ExPEC), *CNF1*, *CNF2*, *papC* and *iucD* (UPEC), *stx* and intimin (*eaeA*; STEC) (Wenz *et al.*, 2006; Suojala *et al.*, 2011). The examined virulence genes their fragment sizes and annealing temperatures are listed in Table1.

Table 1: Oligonucleotide sequences, amplicons size, annealing temperature, accession numbers and references of VGs and ARGs examined in mastitis *E. coli* (103) isolates.

Virulence and resistance genes	Oligonucleotide sequences	Size in bp	Annealing Temp	Accession numbers	Reference
F41 F	GCATCAGCGGCAGTATCT	380	52		Bandyopadhyay et al. (2012)
F41 R	GTC CCTAGCTCAGTATTATCACCT				
FimH F	GATCTTTCGACGCAAATC	389	52	JN408573.I	Moulin-Schouleur et al. (2006)
FimH R	CGAGCAGAAACATCGCAG			-	
Intimin F	ATATCCGTTTTAATGGCTATCT	425	55		Paton and Paton (1998)
Intimin R	AATCTTCTGCGTACTGTGTTCA				
stx / F	ATAAATCGCCATTCGTTGACTAC	180	55		Paton and Paton (1998)
stx I R	AGAACGCCCACTGAGATCATC				
sfal F	CTCCGGAGAACGGGTGCATCTTAC	410	52		Van Bost et al. (2003)
sfa2 R	CGGAGGAGTAATTACAAACCTGGCA				
fI7A F	GCAGAAAATTCAATTTATCCTTGG	537	52		Van Bost et <i>al.</i> (2003)
fI7A R	CTGATAAGCGATGGTGTAATTAAC				
CNFI F	GGCGACAAATGCAGTATTGCTTGG	552	52		Pass et al. (2000)
CNFI R	GACGTTGGTTGCGGTAATTTTGGG				
CNF2 F	ACTGAAGAAGAAGCGTGGAATA	654	52		Kaipainen <i>et al.</i> (2002)
CNF2 R	ATAAGTTGAGCCGAGCGAGG				
TraT F	GATGGCTGAACCGTGGTTATG	307	55	X14566.1	Kaipainen <i>et al.</i> (2002)
TraT R	CACACGGGTCTGGTATTTATGC				
iucDF	AAGTGTCGATTTTATTGGTGTA	778	60	AY230263.1	Ewers et al. (2005)
iucD R	CCATCCGATGTCAGTTTTCTG				
рарС F	GACGGCTGTACTGCAGGGTGTGGCG	328	60	DQ010312.1	Ewers et al. (2005)
рарС R	ATATCCTTTCTGCAGGGATGCAAT A				
LT F	TTACGGCGTTACTATCCTCTCTA	275	52		Bandyopadhyay et al. (2012)
LT R	GGTCTCGGTCAGATATGTGATTC				
ST F	TCCCCTCTTTTAGTCAGTCAACTG	163	52		Bandyopadhyay et al. (2012)
ST R	GCACAGGCAGGATTACAACAAAGT				
F4(K88) F	ATCGGTGGTAGTATCACTGC	601	52		Ojeniyi et al.(1994)
F4(K88) R	AACCTGCGACGTCAACAAGA				
blaSHV F	TT ATCTCCCTGTTAGCCACC	795	55		Yaqoobet al. (2012)
blaSHV R	GATTTGCTGATTTCGCTCGG				
tetA F	GGCGGTCTTCTTCATCATGC	502	64	FJ794040.1	Perreten and Boerlin (2003)
tetA R	CGGCAGGCAGAGCAAGTAGA				
tetB F	CATTAATAGGCGCATCGCTG	930	64	FJ917423.1	Perreten and Boerlin (2003)
tetB R	TGAAGGTCATCGATAGCAGG				
qnrA F	ATTTCTCACGCCAGGATTTG	516	53		Park et <i>al</i> . (2006)
qnrA R	GATCGGCAAAGGTTAGGTCA				
qnrB F	GATCGTGAAAGCCAGAAAGG	469	53		Park et <i>al</i> . (2006)
qnrB R	ACGATGCCTGGTAGTTGTCC				
qnrC F	GGGTTGTACATTTATTGAATC	447	50		Wang et al. (2009)
qnrC R	TCCACTTTACGAGGTTCT				
qnrS F	ACGACATTCGTCAACTGCAA	417	53	FR873842.1	Park et al. (2006)
qnrS R	TAAATTGGCACCCTGTAGGC				
Sull F	GTGACGGTGTTCGGCATTCT	779	68	JN596280.1	Perreten and Boerlin (2003)
Sull R	TCCGAGAAGGTGATTGCGCT				
Sul2 F	CGGCATCGTCAACATAACCT	721	66	JN012467.1	Perreten and Boerlin (2003)
Sul2 R	TGTGCGGATGAAGTCAGCTC				
CTX-M F	CGCTTTGCGATGTGCAG	550	55	JN794060.1	Yaqoobet al.(2000)
CTX-M R	ACCGCGATATCGTTGGT				

Detection of antimicrobial resistance genes (ARGs): Selection of resistance genes was based on the antimicrobial sensitivity profiles of E. coli isolates. Minimal inhibitory concentration (MIC) results showed the percent isolates resistant against betalactam (93 to 99%), cephalosporin (54 to 66%), fluoroquinolones (40 to 74%). oxytetracycline (91%) and 88% against sulfadiazine-trimethoprim (Memon et al., 2013). The selected resistance genes, along with their amplicon sizes and annealing temperatures are listed in table-1. PCR products of representative genes were sent for sequencing to Invitrogen Corp. (Shanghai, China). The obtained gene sequences were blast with National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm. nih.gov) and their accession numbers are listed in Table1.

DNA fingerprinting: All the *E. coli* strains were genotyped by Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR. Genomic DNA extracted through commercially available DNA extraction kit (Geneaid Biotech, Taiwan). DNA template used to amplify ERIC sequences as per procedure described previously (Bandyopadhyay *et al.*, 2012).

ERIC-PCR generated fingerprints of *E. coli* strains were evaluated by Quantity-1 software and SPSS data editor was used for statistical analysis and plotting a dendrogram using Hierarchical Cluster Analysis method (average linkage between groups) to understand the genetic relationship between isolates.

Statistical analysis: The association between VGs and ARGs was assessed by Fisher's exact tests (Analytical Software, Tallahassee, FL, USA). The relationship between VGs and ARGs was deemed as significant at P<0.05.

RESULTS

Serotyping: Sixteen serotypes were characterized in 103 *E. coli* isolates and the most prevalent "O" antigen in this region was O39 (20 strains), followed by O92 (17 strains) and O123 (15 strains) as shown in Table 2.

Virulence genes (VGs): Of all the investigated virulence genes the most predominant was *TraT* gene followed by *FimH*, *papC*, *iucD*, *F4* and *sfa* (Fig. 3 & 4). All the isolates contained either one or maximum four virulence genes, totally nineteen different combinations of VGs found in our isolates (Fig. 1).

Antimicrobial resistance genes (ARGs): Of the ten examined antimicrobial resistance genes, six were present. Most prevalent resistance gene was *sul2* followed by *qnrS*, *CTX-M*, *tetA*, *sul1*, and *tetB* (Fig. 3 & 4). Totally, 26

combinations of ARGs were found in all 103 isolates, majority of isolates carried 3, 4 and 5 resistance genes in group (Fig.1).

Association between VGs and ARGs: The statistical analysis revealed the significant association between some virulence and resistance genes. Accordingly, papC showed a potential association with *sul2* and *qnrS* resistance genes and *FimH* was significantly associated with *qnrS*. However, *iucD* was found associated with *CTX-M*, *sul2* and *tetA* genes (P<0.05) (Table 3). Other virulence genes including *TraT*, *F4* and *sfa* were not found associated with any antimicrobial resistance genes.

DNA fingerprinting: DNA fingerprints based phylogenetic dendrogram yielded ten genotypes (A-J). ERIC-PCR based genotyping combined the genetically similar isolates in same genotype group which can be observed in dendrogram (Fig.1). VGs and ARGs profile are placed in front isolates for better understanding the similarity and/or difference between all genotypes (Fig.1).

DISCUSSION

E. coli is most common cause of bovine mastitis even in well-managed herds, thus causing considerable economic loss to dairy industry, worldwide. So far, very little is known about the *E. coli* serotypes involved in mastitis. In our study, we confirmed that in divergent geographical regions, various *E. coli* serotypes were involved in bovine mastitis. As we found sixteen serotypes in 103 isolates and the most common serovars were O39, O92 and O123 that were widely disseminated on investigated cattle farms of eastern China. Whereas, O146, O8 and O150K, O8K were reported as the most prevalent serovars in mastitis-infected cattle in USA and Netherlands, respectively (Wenz *et al.*, 2006).

Gram negative pathogens especially E. coli is prone to lateral gene transfer, therefore its virulence factors were well established and acquisition of virulence determinants offers evolutionary track to pathogenicity. In this study, the presence of virulence genes in almost all mastitis E. coli isolates was much higher than previously reported 40% in Finland and 37% in Iran (Ghanbarpour and Oswald, 2010; Suojala et al., 2011). Several innate resistant VGs play role in IMI have been characterized, of which TraT gene has been reported in 31-40% of mastitis E. coli isolates in Finland (Kaipainen et al., 2002), which is much lower than 95% of our studied isolates. High frequency of fimbria FimH in 77% of isolates was similar with the findings of Dogan et al. (2006), whereasanotherstudy has shown its 100% prevalence in mastitis E. coli isolates (Fernandes et al., 2011).

 Table 2: Frequency and distribution of "O" antigen type identified in mastitis E. coli (103) isolates

Farms (Numbers)	O antigen type	Frequency	Percentage (%)	Prevalence (Farms No.)				
Nanjing (I)	63, 112, 124, 158	2	1.9 each	O63 (VII), O112 (I), O124 (I), O158 (I)				
Taizhou (II)	5, 157, 186	3	2.9 each	O5 (I), O186 (V), O157 on 2 farms (I & VII)				
Xuzhou (III)	12, 111	4	3.9 each	O12 (VIII), O111 on 2 farms (X & XI)				
Huainan (IV)	131	5	4.9 each	On 2 farms (II & III)				
Lianyungang (V)	162	6	5.8	On 3farms (VII, VIII & X)				
Weifang (VI)	50	7	6.8	On 3 farms (I, III & VI)				
Zaozhuang (VII)	180	8	7.7	On 4 farms (I, IV, VI & XI)				
Hangzhou (VIII)	123	15	14.6	On 4 farms (I, II, IV & IX)				
Nanping (IX)	92	17	16.5	On 7 farms (I, VI & X)				
Fengyang (X)	39	20	19.4	On 7 farms (I & VI)				
Nanchang (XI)								

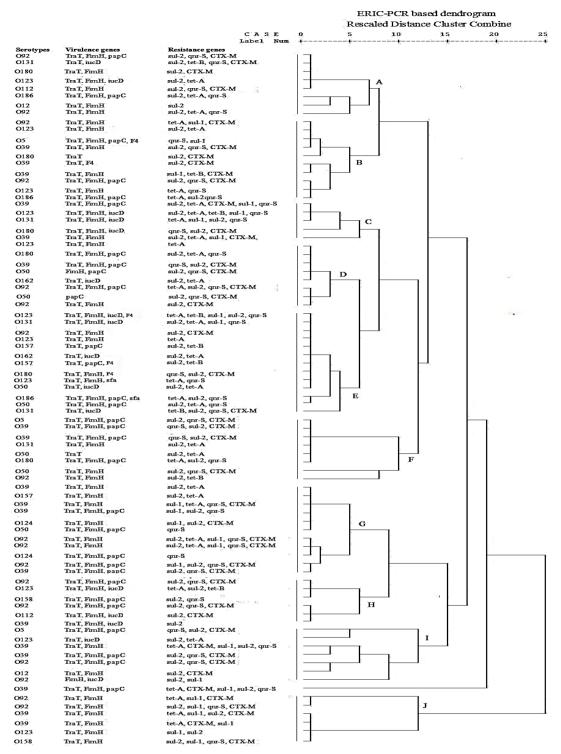


Fig. 1: ERIC-PCR based dendrogram: Percentages of similarity between profiles calculated using SPSS Data Editor and dendrogram generated using Hierarchical Cluster Analysis with cluster method (average linkage between groups). Serotypes, virulence and resistance genes are placed in front of their strain number.

 Table 3: Association of virulence and resistance genes in mastitis E. coli strains

Virulence		CTX-M			Sul I Sul 2			tetA				tetB			qnrS			
Genes (present	+49	-54	Р	+29	-74	Ρ	+83	-20	Р	+48	-55	Р	+14	-89	Р	+50	- 53	Р
in strains)																		
TraT (98)	46(94)	52(96)	0.111	29(100)	69(93)	0.120	79(95)	19(95)	0.141	48(100)	50(90)	0.106	12(86)	86(97)	0.159	47(94)	51(96)	0.111
FimH (79)	42(86)	37(68)	0.090	29(100)	50(68)	0.060	64(77)	15(75)	0.150	40(83)	39(71)	0.102	7(50)	72(81)	0.116	47(94)	32(60)	0.041*
рарС (34)	20(41)	14(26)	0.083	7(24)	27(36)	0.127	32(38)	2(10)	0.038*	12(25)	22(40)	0.083	2(14)	32(36)	0.130	30(60)	4(7)	0.000*
iucD (18)	4(8)	14(26)	0.038*	5(17)	13(18)	0.223	18(22)	0(0)	0.041*	13(27)	5(9)	0.028*	5(36)	13(15)	0.085	6(12)	12(23)	0.102
F4(K88) (6)	4(8)	2(4)	0.222	0(0)	6(8)	NS	4(5)	2(10)	0.253	2(4)	4(7)	0.275	2(14)	4(4)	0.173	0(0)	6(11)	NS
sfa (3)	2(4)	I(2)	0.363	0(0)	3(4)	NS	2(2)	l (5)	0.388	0(0)	3(5)	NS	0(0)	3(3)	NS	3(6)	0(0)	0.245

The association between VGs and ARGs was considered as significant when P values were less than 0.05 (*P<0.05). The positive (+) numbers showed the presence of ARGs in number of strains and negavitive (-) numbers showed the absence of ARGs in mastitis *E. coli* strains. Number of virulence genes positive for isolates were placed in boxes of VGs row and their percentages (%) in positive and negative ARGs isolates were given in relevent brackets.

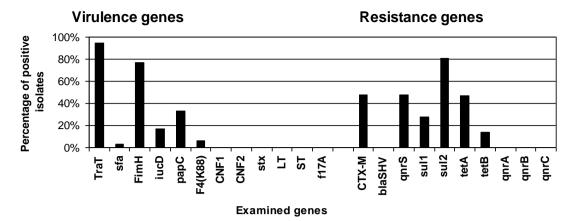
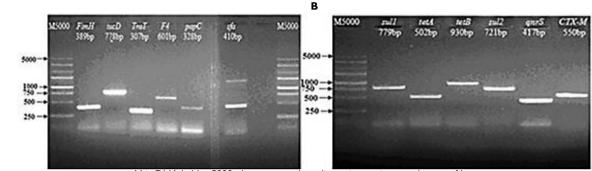



Fig.2: Detected virulence and resistance genes (percentage) in mastitis E. coli (103) isolates

Δ

M is DNA ladder 5000, the names and amplicon sizes written at the top of lane

Fig.3: Detected Virulence genes (A) and Antimicrobial resistance genes (B) in mastitis E. coli isolates

In this study, existence of papC and sfa genes in mastitis E. coli isolates was in agreeement with previous reports of Kaipainen et al. (2002) and Suojala et al. (2011). The fimbria F4 was also detected in six isolates, which has not yet reported in mastitis E. coli isolates. These fimbrial adhesins play role in pathogenesis of bacterial infection through binding to host cell receptors (Bertin et al., 1996). Most commonly reported virulence gene in mastitis E. coli isolates was iucD, and its presence was reported in all isolates (Lin et al., 1998), in other studies it was reported as 11-16% in mastitis E. coli (Ghanbarpour and Oswald, 2010; Suojala et al., 2011), similarly we also found *iucD* in 17% isolates. Virulence genes TraT, FimH and papC were present alone as well as in combinations in our isolates and this support the findings of Kaipainen et al. (2002), that virulence gene were present in combinations in mastitis E. coli isolates. However, our findings disagreed with US study showing no combinations of VGs in mastitis E. coli isolates (Wenz et al., 2006). Our results showed that all the studied mastitis E. coli isolates were pathogenic, as all isolates were carrying a variety of virulence genes. It was assumed that high incidence of Trat (95%) and FimH (77%) in our isolates could be one of the reasons for bovine coliform mastitis in this region, since their role in mastitis pathogenesis needs further molecular investigation.

It is well reported that majority of mastitis *E. coli* are lacking *ST*, *LT*, *stx1*, *stx2*, *CNF1*, *CNF2* and *intimin* (*eae*) virulence genes (Dogan*et al.*, 2006), our results are also same, no any isolate carried *F17A*, *F41*, *stx1*, *CNF1*, *CNF2*, *LT*, *intimin* and *ST genes*.

Majority of mastitis *E. coli* isolates are resistant (Liu *et al.*, 2014), high prevalence of resistance genes i.e. *CTX*-

M, sull, sul2, tetA, tetB and qnrS is in harmony with our MIC results (Memon et al., 2013). Presence of CTX-M and qnrS gene (48%) in mastitis E. coli isolates is firstly reported particularly in China. Furthermore, the unconditional association between resistance and virulence genes in our isolates was prominent. Another association between CTX-M and iucD gene was pragmatic, which is in accordance with a previous report on association of β lactam genes with VGs in mastitis *E*. coli and in pigs E. coli isolates (Wang et al., 2010; Suojala et al., 2011). Whereas, the association of sulfonamide and tetracycline resistance genes (sul2 and tetA) with iucD and papC was evident, similar findings were also observed in our previous study on E. coli isolates from chicken (Yaqoob et al., 2013). High prevalence of *anrSand* its unconditional association with FimH and papC is first time reported in mastitis E. coli from China. It is in contrast with previous report claiming no association between *qnrS* and *papC* in *E. coli* isolates (Da Silva and Mendonca 2012), however, it is in agreement with Zhao et al. (2009) reported association between papC and CTX-M genes. Increased prevalence of a various resistance genes in mastitis E. coli isolates used conferring resistance against commonly antimicrobials in veterinary practice, especially for the treatment of mastitis infection, thus intimating the proper selection and careful use of antibiotics.

ERIC-PCR based DNA polymorphism patterns generated dendrogram showed ten distinct genotypes expressing 80-90% similarity with each other. Similarity between isolates within same cluster was 95-99% irrespective to combinations of VGs and ARGs suggested the presence of some other uninvestigated genes presence in the isolates of same cluster. The highly virulent isolates represented the genotypes (B, C, E, G and H) and most resistant isolates were in genotypes (A, B, C, G, and J). High genotypic similarity in isolates may be due to similar management, treatment patterns and/or climate conditions of study area.

Conclusions: Our results showed variety of E. coli serotypes were involved in bovine mastitis infection which were closely related at gene level. Thus, isolates with different serotypes may have similar genes. Mastitis E. coli isolates were highly pathogenic and genetically resistant which is alarming and could be the main reason for the clinical mastitis treatment failure. High virulence potential in isolates indicating the indiscriminate use of commonly used antibiotics which provide opportunity to pathogen to become more virulent. Furthermore, genetically related mastitis E. coli isolates were prevailing at different locations which may be the consequence of selection pressure of antibiotics, animal transition from one place to another, similar husbandry practices and management. More research is necessary to appraise the role of *E. coli* in bovine mastitis infection to develop proper approach for treatment and control of coliform mastitis.

Acknowledgements: This study supported by the National Natural Science Foundation of China (No. 31172319), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Department of Livestock and Fisheries Government of Sind, Pakistan under the "ASPL-II" project.

Author's contribution: FH and JM designed the study. JK, NH, MY and AA executed and helped in experiments. NH, RB, MFH, JS and BS supported in analyzing the data and interpretation. All authors reviewed critically the interpreted data and consented on final version.

REFERENCES

- Aslam M, Diarra MS, Checkley S, Bohaychuk V, et al., 2012. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada. Int | Food Microbiol, 156: 222-230.
- Bandyopadhyay S, Lodh C, Sarkar M, Ghosh MK, Bera AK, et al., 2012. Prevalence, molecular fingerprinting and drug resistance profile of enterovirulent *Escherichia coli* isolates from free-ranging yaks of Tawang district, Arunachal Pradesh, India. Trop Anim Health Prod, 44: 1063-1072.
- Bertin Y, Martin C, Oswald E and Girardeau, 1996. Rapid and specific detection of F17-related pilin and adhesion genes in diarrheic and septicemic *Escherichia coli* strains by multiplex PCR. J Clin Microbiol, 34: 2921–2928.
- Blum SE and Leitner G, 2013. Genotyping and virulence factors assessment of bovine mastitis *Escherichia coli*. Vet Microbiol, 163: 305-312.
- Da Silva G, and Mendonca N, 2012. Association between antimicrobial resistance and virulence in *Escherichia coli* (Review). Virulence, 3: 18-28.
- Dogan B, Klaessig S, Rishniw M, Almeida RA, Oliver SP, et al., 2006. Adherent and invasive *Escherichia coli* are associated with persistent bovine mastitis. Vet Microbiol, 116: 270-282.
- Ewers C, Janssen T, Kiessling S, Philipp HC et al., 2005. Rapid detection of virulence-associated genes in avian pathogenic *Escherichia coli* by multiplex polymerase chain reaction. Avian Dis, 49: 269-273.
- Fernandes J, Zanardo LG, Galvão NN, Carvalho IA, Nero LA, et al., 2011. Escherichia coli from clinical mastitis: serotypes and virulence factors. J Vet Diagnostic Invest, 23: 1146-52.

- Ghanbarpour R, and Oswald E, 2010. Phylogenetic distribution of virulence genes in *Escherichia coli* isolated from bovine mastitis in Iran. Res Vet Sci, 88: 6-10.
- Javed S, Muhammad G, Saqib M and Hussain I, 2015. Comparative prevalence of streak canal and intramammary microorganisms and their contemporaneous association in a dairy cow and buffalo herd lacking mastitis control program. Int J Agri Biol, 17: 755-760.
- Kaipainen T, Pohjanvirta T, Shpigel NY, Shwimmer A, Pyorala S, et al., 2002. virulence factors of *Escherichia coli* isolated from bovine clinical mastitis. Vet Microbiol, 85: 37-46.
- Kaper J, Nataroand JP and Mobley HL, 2004. Pathogenic Escherichia coli. Nat Rev Microbiol, 2: 123-140.
- Khan A, Hussain R, Javed MT and Mahmood F, 2013. Molecular analysis of virulent genes (coa and spa) of Staphylococcus aureus involved in natural cases of bovine mastitis. Pak J Agric Sci, 50: 739-743.
- Kempf F, Loux V and Germon P, 2015. Genome sequences of two bovine mastitis-causing *Escherichia coli* strains. Genome Announc 3: pii: e00259-15. doi: 10.1128/genomeA.00259-15.
- Liu Y, Liu G, Liu W, Liu Y, Tariq A, et al., 2014. Phylogenetic group, virulence factors and antimicrobial resistance of Escherichia coli associated with bovine mastitis. Res Microbial, 165: 273-277.
- Memon J, Kashif J, Yaqoob M, Wang LP, Yang YC, et al., 2013. Molecular characterization and antimicrobial sensitivity of pathogens from subclinical and clinical mastitis in Eastern China. Pak Vet J, 33: 170-174
- Moulin-Schouleur M, Schouler C, Tailliez P, Kao M, Bre'e A, et al., 2006. Common virulence factors and genetic relationships between O18:K1:H7 escherichia coli isolates of human and avian origin. J Clin Microbiol, 44: 3484-3492.
- Ojeniyi B, Ahrensand P and Meyling A, 1994. Detection of fimbrial and toxin genes in *Escherichia coli* and their prevalence in piglets with diarrhoea. The application of colony hybridization assays, polymerase chain reaction and phenotypic assays. Zentralbl Veterinarmed, B, 41: 49-59
- Paton A and Paton JC, 1998. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays Stx1, Stx2, eaeA, enterohemorrhagic *E. coli* hlyA, rfb O157. J Clin Microbiol, 36: 598-602.
- Park C, Robicsek A, Jacoby GA, Sahmand D, et al., 2006. Prevalence in the United States of aac (6_)-lb-cr encoding a ciprofloxacinmodifying enzyme. Antimicrobial Agents Chemoth, 50: 3953–3955.
- Pass M, Odedraand R and Batt RM, 2000. Multiplex PCRs for identification of *Escherichia coli* virulence genes. J Clin Microbiol, 38: 2001-2004.
- Perreten V and Boerlin P, 2003. A new sulfonamide resistance gene (sul3) in *Escherichia coli* is widely spread in the pig population of Switzerland. Antimicrobial Agents Chemoth, 47: 1169-1172.
- Schroeder C, Zhao C, Roy CD, Torcolini J, Zhao S, et al., 2002. Antimicrobial resistance of escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol, 68: 576-581.
- Suojala L, Pohjanvirta T, Simojoki H, Myllyniemi AL, Pitkala A, et al., 2011. Phylogeny, virulence factors and antimicrobial susceptibility of *Escherichia coli* isolated in clinical bovine mastitis. Vet Microbiol, 147: 383-388.
- Van Bost S, Jacquemin E, Oswaldand E, et al., 2003. Multiplex PCRs for identification of necrotoxigenic Escherichia coli. J Clin Microbiol, 41: 4480-4482.
- Wang M, Guo Q, Xu X, Wang X, Ye X, et al., 2009. New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis. Antimicrobial Agents Chemoth, 53: 1892-1897.
- Wang X, Jiang HX, Liao XP, Liu JH, Zhang WJ, et al., 2010. Antimicrobial resistance, virulence genes, and phylogenetic background in *Escherichia coli* isolates from diseased pigs. FEMS Microbiol Letters, 306: 15-21.
- Wenz J, Garryand FB and Barrington GM, 2006. Comparison of disease severity scoring systems for dairy cattle with acute coliform mastitis. Javma-J Am Vet Med Assoc, 229: 259-262.
- Yaqoob M, Wang LP, Wang S, Hussain S, Memon J, et al., 2013. Associations between anti-microbial resistance phenotypes, antimicrobial resistance genotypes and virulence genes of *Escherichia coli* isolates from Pakistan and China. Transbound Emerg Dis, 60:4 16-424
- Zhao L, Chen X, Zhu X, Yang W, Dong L, et al., 2009. prevalence of virulence factors and antimicrobial resistance of uropathogenic *Escherichia coli* in Jiangsu Province (China). Basic Translational Sci, 74: 702-707.